
Verified Over-Approximation of the Diameter of
Propositionally Factored Transition Systems

Mohammad Abdulaziz†, Charles Gretton†‡, and Michael Norrish†

†Canberra Research Lab., NICTA?; †Australian National University; ‡ Griffith University

Abstract. To guarantee the completeness of bounded model checking (BMC)
we require a completeness threshold. The diameter of the Kripke model of the
transition system is a valid completeness threshold for BMC of safety proper-
ties. The recurrence diameter gives us an upper bound on the diameter for use
in practice. Transition systems are usually described using (propositionally) fac-
tored representations. Bounds for such lifted representations are calculated in a
compositional way, by first identifying and bounding atomic subsystems, and
then composing those results according to subsystem dependencies to arrive at a
bound for the concrete system. Compositional approaches are invalid when using
the diameter to bound atomic subsystems, and valid when using the recurrence
diameter. We provide a novel overapproximation of the diameter, called the sub-
list diameter, that is tighter than the recurrence diameter. We prove that composi-
tional approaches are valid using it to bound atomic subsystems. Those proofs are
mechanised in HOL4. We also describe a novel verified compositional bounding
technique which provides tighter overall bounds compared to existing bottom-up
approaches.

1 Introduction

Problems in model checking and automated planning are typically formalised in terms
of transition systems. For model checking safety formulae—i.e., globally true formulae
of the form Gp—one asks: Does every sequence of transitions from the initial state
include only states satisfying p? In planning one asks the converse question: Is there a
sequence of transitions from a given initial state to a state satisfying a goal condition? In
other words, model checking poses a classical planning problem with a goal condition
“p is false”. For bounded versions of those questions we have an upper bound on the
number of transitions that can be taken—i.e., Can the goal be achieved using N transi-
tions? The diameter of a system is the length of the longest minimum-length sequence
of transitions between any pair of states. Taking “N = diameter” we have that bounded
model checking of safety formulae is complete (Biere et al [3]). In other words, if the
goal condition cannot be reached inN transitions, then it cannot be reached irrespective
of the number of transitions taken. In this sense, the diameter is equal to a completeness
threshold for bounded model checking of safety (Kroening and Strichman [11]).

? NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

A variety of uses for bounds providing the completeness of bounded model check-
ing have been proposed. If the bound N is small, problems reduce in practice to fixed-
horizon variants—i.e., is there a sequence of transitions of length less-than-or-equal-
to N whose final state satisfies a desired property? That fixed-horizon problem can
be posed as a Boolean SAT(isfiability) problem and solved efficiently (Biere et al [3],
Kautz and Selman [10]). Also, SAT-based approaches which implement query strategies
to focus search effort at important horizon lengths, as discussed in Rintanen [14], and
Streeter and Smith [19], can also benefit from knowing a small bound. Finally, where
system models are given by factored propositional representations and the search goal
is to prove that no state satisfying a large conjunct is reachable, by additionally consid-
ering the cones of influence of variable sets one can use such bounds to identify a small
subset of goal propositions which can be easily proved unreachable (see, for example,
Rintanen and Gretton [15]).

Despite the important applications above, obtaining useful bounds in practice is not
a simple matter. Computing the system diameter is intractable. An encoding of the re-
quired formula in quantified Boolean logic to test whether the diameter isN is provided
in [3], and is not known to be practically useful. Indeed, for practice the proposal in [3]
is to use an overapproximation of the system diameter, namely the recurrence diame-
ter. The recurrence diameter corresponds to the length of the longest non-looping path
in the Kripke model, thus its computation poses the NP-hard longest path problem.
A difficulty in practice is that such structures are described using a compact factored
problem description. The Kripke structure corresponding to such a description is much
(sometimes exponentially) larger than the description itself, and is rarely explicitly rep-
resented. Proposals in this setting employ decompositional bounding procedures which
exploit independence between sets of state-characterising variables. Bounds for atomic
subsystems are first computed in isolation, which gives the advantage of a potential
exponential reduction in the cost of computing the bound on the diameter (e.g., if the
recurrence diameter is to be computed). Then the bounds on subsystems are combined
either multiplicatively or additively depending on subsystem dependencies. Intuitively,
the resulting overapproximation is given by an additive expression whose terms corre-
spond to bounds for independent abstract subproblems. The decompositional approach
from Baumgartner et al [1] treats design netlists, and in [15] the decomposition treats
the dependency graph (causal graph) associated with a STRIPS-style description. Im-
portantly, decompositional approaches calculate invalid bounds when using the system
diameter to bound atomic subproblems. One workaround, as per Baumgartner et al is
to use the recurrence diameter instead.

Treating the dependency graph of STRIPS-style descriptions, we have three primary
contributions. First, we develop the concept of sublist diameter which is a tighter over-
approximation of diameter compared to the recurrence diameter. Second, we develop
a novel approach to combining the bounds of atomic subproblems, and show that it
can provide relatively tight bounds compared to bottom-up approaches, such as those
given in [1,15]. Third, we have proved the correctness of both our sublist diameter, and
our approach to exploiting it in problem decompositions. Importantly, our proofs are
mechanised in the HOL interactive theorem proving system [18].

2 Definitions

Definition 1 (States and Actions). A transition system is defined in terms of states and
actions: (i) States are finite maps from variables—i.e., state-characterizing proposition-
s—to Booleans, abbreviated as α . We write D(s) for the domain of s. (ii) An action π
is a pair of finite maps over subsets of those variables. The first component of the pair,
pre(π), is the precondition and the second component of the pair, eff(π), is the effect.

We give examples of states and actions using sets of literals. For example, {x,¬y, z}
is the state where state variables x and z are (map to) true, and y is false.

Definition 2 (Factored Transition System). A factored transition system Π contains
two components, (i) Π.I, a finite map, whose domain is the domain of the system; and
(ii) Π.A a set of actions, as above. We write transition-system Π when the domains
of the system’s actions’ preconditions and effects are all subsets of the system’s domain.
We also write D(Π) for the domain of a system Π, and will often take complements of
variable sets with respect to it, so that vs is the set of variables D(Π) \ vs . The set of
valid states, U(Π), for a factored transition system is {s | D(s) = D(Π)}. The set of
valid action sequences, A(Π), for a factored transition system is {π̇ | set π̇ ⊆ Π.A}.

Definition 3 (Action Execution). When an action π (= (p, e)) is executed at state s,
written e(s, π), it produces a successor state s′. If p is not a submap of s then s′ = s.1

Otherwise s′ is a valid state where e v s ′ and s(x) = s′(x) ∀x ∈ D(s) \ D(e). This
operation, state-succ, has the following formal definition in HOL:

state-succ s (p,e) = if p v s then e] s else s

We lift e to sequences of executions, taking an action sequence π̇ as the second argu-
ment. So e(s, π̇) denotes the state resulting from successively applying each action from
π̇ in turn, starting from s.

A Key concept in formalising compositional reasoning about transition systems is
projection.

Definition 4 (Projection). Projecting an object (a state s, an action π, a sequence of
actions π̇ or a factored transition system Π) on a set of variables vs refers to restrict-
ing the domain of the object or its constituents to vs . We denote these operations as
s�vs , π�vs , π̇�vs and Π�vs for a state, action, action sequence and transition system
respectively. HOL provides domain restriction for finite maps in its standard library;
projections on composite objects use this operation on the constituents. The one (mi-
nor) exception is projection on action sequences, where a projected action is dropped
entirely if it has an empty effect:

[]�vs = []
((p,e):: π̇)�vs = if D(e�vs) 6= ∅ then (p�vs ,e�vs):: π̇�vs else π̇�vs

1 Allowing any action to execute in any state is a deviation from standard practice. By using
total functions in our formalism, much of the resulting mathematics is relatively simple.

3 Upper Bounding the Diameter with Decomposition

We define the diameter of a transition system in terms of its factored representation as 2

Definition 5 (Diameter).

d(Π) = MAX {MIN (Πd (s,π̇,Π)) | s ∈ U(Π) ∧ π̇ ∈ A(Π)}

where Πd is defined as

Πd (s,π̇,Π) = { |π̇′| | e(s,π̇′) = e(s,π̇) ∧ π̇′ ∈ A(Π)}

If the transition system under consideration exhibits a modular or hierarchical struc-
ture, upper bounding its diameter compositionally would be of great utility in terms of
computational cost; i.e., if the whole system’s diameter is bounded by a function of its
components’ diameters. One source of structure in transition systems, especially hier-
archical structure, is dependency between state variables.

Definition 6 (Dependency). A variable v2 is dependent on v1 in a factored transition
system Π iff one of the following statements holds:3 (i) v1 is the same as v2, (ii) For some
action π in A such that v1 is a precondition of π and v2 is an effect of π, or (iii) There
is an action π in A such that both v1 and v2 are effects of π. We write v1 → v2 if v1 is
dependent on v2 in Π. Formally in HOL we define this as4:

v1 → v2 ⇐⇒
(∃ p e.

(p,e) ∈ Π.A ∧
(v1 ∈ D(p) ∧ v2 ∈ D(e) ∨ v1 ∈ D(e) ∧ v2 ∈ D(e))) ∨

v1 = v2

We also lift the concept of dependency to sets of variables. A set of variables vs2
is dependent on vs1 in a factored transition system Π (written vs1 → vs2) iff all of
the following conditions hold: (i) vs1 is disjoint from vs2 and (ii) There exist variables
v1 ∈ vs1 and v2 ∈ vs2 such that v1 → v2. We define this relation in HOL as4:

vs1 → vs2 ⇐⇒
∃ v1 v2. v1 ∈ vs1 ∧ v2 ∈ vs2 ∧ DISJOINT vs1 vs2 ∧ v1 → v2

One tool used in analysing dependency structures is the dependency graph. The
dependency graph of a factored transition system Π is a directed graph, written G, de-
scribing variable dependencies. We use it to analyse hierarchical structures in transition
systems. This graph was conceived under different guises in [20] and [5], and is also
commonly referred to as a causal graph.

Definition 7 (The Dependency Graph). The dependency graph has one vertex for
each variable in D. An edge from v1 to v2 records that v1 → v2. When we illustrate a
dependency graph we do not draw arcs from a variable to itself although it is dependent
on itself.

2 With this definition the diameter will be one less than how it was defined in [2].
3 We are using the standard definition of dependency described in [20,5].
4 → has a Π parameter, but we use it with HOL’s ad hoc overloading ability.

z

x y

(a)

0

2 4

6

1 3 5 7

(b)

Fig. 1: a) the dependency and b) the state transition graphs of the system in Example 1
.

We also lift the concept of dependency graphs and refer to lifted dependency graphs
(written Gvs). Each node in Gvs , for a factored transition system Π, represents a mem-
ber of a partition of D(Π), i.e. all vertices in Gvs represent disjoint sets of variables.

The structures we aim to exploit are found via dependency graph analysis, where,
for example, the lifted dependency graph exhibits a parent-child structure, defined as
follows:

Definition 8 (Parent-Child Structure). A system Π has a parent-child structure if
D(Π) is comprised of two disjoint sets of variables vs1 and vs2 satisfying vs2 6→ vs1.
In HOL we model this as follows:

child-parent-rel (Π,vs) ⇐⇒ vs 6→ vs

It is intuitive to seek an expression that is no worse than multiplication to combine
subsystem diameters, or an upper bound for it, into a bound for the entire system’s
diameter. For instance, for systems with the parent-child structure, previous work in
the literature suggests that (b(Π�vs) + 1)(b(Π�vs) + 1) should bound b(Π), for some
upper bound on the diameter b : Π → N to be considered decomposable for parent-
child structures. The following example shows that the diameter is not a decomposable
bound for parent-child structures.

Example 1. Consider a factored transition system Π with the following set of actions

A =

a = ({¬x,¬y}, {x}), b = ({x,¬y}, {¬x, y}), c = ({¬x, y}, {x}),
z1 = ({¬z}, {x, y}), z2 = ({¬z}, {¬x, y}), z3 = ({¬z}, {x,¬y}),
z4 = ({¬z}, {¬x,¬y})

 .

The dependency graph of Π is shown in Figure 1a. D(Π) is comprised of two sets of
variables P = {z}, and the set C = {x, y}, where C 6→ P holds. d(Π) = 3, as this is
the length of the longest shortest transition sequence in Π. Specifically, that sequence is
[a; b; c] from {¬x,¬y, z} to {x, y, z}. d(Π�P) = 0 because in Π�P the state cannot be
changed, and d(Π�C) = 1 because any state in Π�C is reachable from any other state
via one transition with one of the actions {z1�C , z2�C , z3�C , z4�C}. Accordingly, d is
not decomposable.

3.1 Decomposable Diameters

Baumgartner et al [1] show that the recurrence diameter gives a decomposable upper
bound on diameter.

Definition 9 (Recurrence Diameter). Following Biere et al [2], the recurrence diam-
eter is formally defined as follows:

rd(Π) = MAX { |p| | valid_path Π p ∧ ALL_DISTINCT p }

where

valid_path Π [] ⇐⇒ T
valid_path Π [s] ⇐⇒ s ∈ U(Π)
valid_path Π (s1:: s2:: rest) ⇐⇒

s1 ∈ U(Π) ∧ (∃π. π ∈ Π.A ∧ e(s1,[π]) = s2) ∧
valid_path Π (s2:: rest)

We provide a tighter and decomposable diameter: the sublist diameter, `.

Definition 10 (Sublist Diameter). List l1 is a scattered sublist of l2 (written l1 �· l2)
if all the members of l1 occur in the same order in l2. This is defined in HOL as:

[] �· `1 ⇐⇒ T
h:: t �· [] ⇐⇒ F
x :: `1 �· y :: `2 ⇐⇒ x = y ∧ `1 �· `2 ∨ x :: `1 �· `2

Based on that the sublist diameter is defined as:

`(Π) = MAX {MIN Π�·(s,π̇) | s ∈ U(Π) ∧ π̇ ∈ A(Π)}

where Π�· is defined as

Π�·(s,π̇) = { |π̇′| | e(s,π̇′) = e(s,π̇) ∧ π̇′ �· π̇ }

It should be clear that `(Π) is an upper bound on d(Π) and that it is also a lower bound
on rd(Π), as demonstrated in the following theorem.

` transition-system Π ⇒ d(Π) ≤ `(Π) ∧ `(Π) ≤ rd(Π)

The sublist diameter is tighter than the recurrence diameter because it exploits the fac-
tored representation of transitions as actions, as shown in the next example.

Example 2. Consider a factored transition system Π with the following set of actions

A =
{
a1 = (∅, {x, y}), a2 = (∅, {¬x, y}), a3 = (∅, {x,¬y}), a4 = (∅, {¬x,¬y})

}
.

For this system d(Π) = 1 because any state is reachable from any state with one action.
rd(Π) = 3 because there are many paths with length 3 with no repeated states, but not
any longer than that. Lastly, `(Π) = 1 because for any non empty action sequence
π̇ ∈ A(Π) the last transition π in π̇ can reach the same destination as π̇, and [π] is a
sublist of π̇.

[] H
vs
π̇ = π̇�D−vs

π̇c H
vs
[] = []

πc :: π̇c H
vs
π :: π̇ =

{
π :: (π̇c H

vs
π̇) if π�vs = πc

πc :: π̇c H
vs
π̇ o/wise

(a) .

w x

v y z

(b)

Fig. 2: (a)The definition of the stitching function (H), and (b) is the dependency graph of

the system in Example 4.

The other important property of ` is that it is decomposable as demonstrated in the
following example.

Example 3. Consider the factored transition system Π in Example 1. The values of
`(Π) and `(Π�P) are the same as those of d(Π) and d(Π�P), respectively. However,
`(Π�C) = 3 because, although any state in Π�C is reachable from any other state via
one transition, there is no shorter sublist of the transition sequence [a�C ; b�C ; c�C] that
starts at {¬x,¬y} and results in {x, y}.

Now we prove that ` is decomposable.

Theorem 1. If the domain of Π is comprised of two disjoint sets of variables vs1 and
vs2 satisfying vs2 6→ vs1, we have:

`(Π) < (`(Π�vs1) + 1)(`(Π�vs2) + 1)

` transition-system Π ∧ child-parent-rel (Π,vs) ⇒
`(Π) < (`(Π�vs) + 1) × (`(Π�vs) + 1)

Proof. To prove Theorem 1 we use a construction which, given any action sequence
π̇ ∈ A(Π) violating the stated bound and a state s ∈ U(Π), produces a sublist, π̇′, of π̇
satisfying that bound and e(s, π̇) = e(s, π̇′). The premise vs2 6→ vs1 implies that ac-
tions with variables from vs2 in their effects never include vs1 variables in their effects.
Hereupon, if for an action π, eff(π) ⊆ s is true, we call it a s-action. Because vs1 and
vs2 capture all variables, the effects of vs2-actions after projection to the set vs2 are
unchanged. Our construction first considers the abstract action sequence π̇�vs2 . Defi-
nition 10 of ` provides a scattered sublist π̇′vs2 �· π̇�vs2 satisfying |π̇′vs2 | ≤ `(Π�vs2).
Moreover, the definition of ` can guarantee that π̇′vs2 is equivalent, in terms of the ex-
ecution outcome, to π̇�vs2 . The stitching function described in Figure 2a is then used
to remove the vs2-actions in π̇ whose projections on vs2 are not in π̇′vs2 . Thus our
construction arrives at the action sequence π̇′′ = π̇′vs2 Hvs2

π̇ with at most `(Π�vs2) vs2-

actions. We are left to address the continuous lists of vs1-actions in π̇′′, to ensure that in

the constructed action sequence any such list satisfies the bound `(Π�vs1). The method
by which we obtain π̇′′ guarantees that there are at most `(Π�vs2) + 1 such lists to ad-
dress. The definition of ` provides that for any abstract list of actions π̇�vs1 in Π�vs1 ,
there is a list that achieves the same outcome of length at most `(Π�vs1). Our con-
struction is completed by replacing each continuous sequence of vs1-actions in π̇′′ with
witnesses of appropriate length (`(Π�vs1)).

The above construction can be illustrated using the following example.

Example 4. Consider a factored transition system with the set of actions

A =

{
a = (∅, {x}), b = ({x}, {y}), c = ({x}, {¬v}), d = ({x}, {w}),
e = ({y}, {v}), f = ({w, y}, {z}), g = ({¬x}, {y, z})

}
whose dependency graph is shown in Figure 2b. The domain of Π is comprised of the
two sets vs2 = {v, y, z} and vs1 = {w, x}, where vs2 6→ vs1. In Π, the actions
b, c, e, f, g are vs2-actions, and a, d are vs1-actions. An action sequence π̇ ∈ A(Π)
is [a; a; b; c; d; d; e; f] that reaches the state {v, w, x, y, z} from {v,¬w,¬x,¬y,¬z}.
When π̇ is projected on vs2 it becomes [b�vs2 ; c�vs2 ; e�vs2 ; f�vs2], which is in A(Π�vs2).
A shorter action sequence, π̇c, achieving the same result as π̇�vs2 is [b�vs2 ; f�vs2].
Since π̇c is a scattered sublist of π̇�vs2 , we can use the stitching function to obtain a
shorter action sequence in A(Π) that reaches the same state as π̇. In this case, π̇c H

vs2
π̇

is [a; a; b; d; d; f]. The second step is to contract the pure vs1 segments which are [a; a]
and [d; d], which are contracted to [a] and [d] respectively. The final constructed action
sequence is [a; b; d; f], which achieves the same state as π̇.

4 Decomposition for Tighter Bounds

So far we have seen how to reason about bounds on underlying transition system sublist
diameters by treating sublist diameters of subsystems separately in an example struc-
ture (i.e.the parent child structure). We now discuss how to exploit a more general de-
pendency structure to compute an upper bound on the sublist diameter of a system,
after separately computing subsystems’ sublist diameters. We exploit branching one-
way variable dependency structures. An example of that type of dependency structure
is exhibited in Figure 3a, where Si are sets of variables each of which forms a node
in the lifted dependency graph. Recall that an edge in this graph from a node Si to a
node Sj means Si → Sj , which means that there is at least one edge from a variable in
Si to one in Sj . Also, an absence of an edge from a node Si to a node Sj means that
Si 6→ Sj , and which means that is not a variable in Sj that depends on a variable in Si.

In this section we present a general theorem about the decompositional properties
of the sublist diameter to treat the more general structures. Then we provide a verified
upper bounding algorithm based on it. Consider the following more general form of the
parent child structure:

Definition 11 (Generalised Parent-Child Structure). For a factored transition sys-
tem Π and two sets of variables vs1 and vs2, the generalised parent-child relation holds

between vs1 and vs2 iff (i) vs2 6→ vs1, (ii) vs1 6→ (vs1 ∪ vs2), and (iii) no bidirectional
dependencies exist between any variable in vs2 and (vs1 ∪ vs2). Formally, we define
this relation in HOL as follows:

gen-parent-child (Π,vs,vs ′) ⇐⇒
DISJOINT vs vs ′ ∧ vs ′ 6→ vs ∧ vs 6→ vs ∪ vs ′ ∧
∀ v v ′. v ∈ vs ′ ∧ v ′ ∈ vs ∪ vs ′ ⇒ v 6→ v ′ ∨ v ′ 6→ v

To prove the more general theorem we need the following lemma:

Lemma 1. Let n(vs,π̇) be the number of vs-actions contained within π̇. Consider Π,
in which the generalised parent-child relation holds between sets of variables p and c.
Then, any action sequence π̇ has a sublist π̇′ that reaches the same state as π̇ starting
from any state such that: n(p, π̇′) ≤ `(Π�p)(n(c, π̇′) + 1) and n(p, π̇′) ≤ n(p, π̇).

` transition-system Π ∧ s ∈ U(Π) ∧ π̇ ∈ A(Π) ∧
gen-parent-child (Π,p,c) ⇒
∃ π̇′.

n(p,π̇′) ≤ `(Π�p) × (n(c,π̇′) + 1) ∧ π̇′ �· π̇ ∧
n(p,π̇′) ≤ n(p,π̇) ∧ e(s,π̇) = e(s,π̇′)

Proof. The proof of Lemma 1 is a constructive proof. Let π̇C be a contiguous fragment
of π̇ that has no c-actions in it. Then perform the following steps:

– By the definition of `, there must be an action sequence π̇p such that e(s, π̇p) =
e(s, π̇C�p), and satisfies |π̇p| ≤ `(Π�p) and π̇p �· π̇C�p.

– Because p 6→ D(Π) \ p \ c holds and using the same argument used in the proof
of Theorem 1, π̇′C(= π̇pH

p
π̇C�D\c) achieves the same D \ c assignment as π̇C (i.e.,

e(s, π̇′C)�D\c = e(s, π̇C)�D\c), and it is a sublist of π̇C . Also, n(p, π̇′C) ≤ `(Π�p)
holds.

– Finally, because π̇C has no c-actions, no c variables change along the execution of
π̇C and accordingly any c variables in preconditions of actions in π̇C always have
the same assignment. This means that π̇′C HD\c

π̇C will achieve the same result as π̇C ,

but with at most `(Π�p) p-actions.

Repeating the previous steps for each π̇C fragment in π̇ yields an action sequence π̇′

that has at most `(Π�p)(n(c, π̇) + 1) p-actions. Because π̇′ is the result of consecutive
applications of the stitching function, it is a scattered sublist of π̇. Lastly, because during
the previous steps, only p-actions were removed as necessary, the count of the remaining
actions in π̇′ is the same as their number in π̇.

Corollary 1. Let F (p, c, π̇) be the witness action sequence of Lemma 1. We know then
that:

– e(s, F (p, c, π̇)) = e(s, π̇),
– n(p, F (p, c, π̇)) ≤ `(Π�p)(n(c, π̇) + 1).
– F (p, c, π̇) �· π̇, and
– n(p, F (p, c, π̇)) ≤ n(p, π̇).

Branching one-way variable dependencies are captured when Gvs is a directed
acyclic graph (DAG).

Definition 12 (DAG Lifted Dependency Graphs). In HOL we model a Gvs that is a
DAG with the predicate top-sorted that means that Gvs is a list of nodes of a lifted
dependency graph topologically sorted w.r.t. dependency. This predicate is defined as
follows in HOL:

top-sorted [] ⇐⇒ T
top-sorted (vs::Gvs) ⇐⇒

(∀ vs ′. vs ′ ∈ set Gvs ⇒ vs ′ 6→ vs) ∧ top-sorted Gvs

We also define the concept of children for a node vs in Gvs , written as C(vs) to denote
the set {vs0 | vs0 ∈ Gvs ∧ vs → vs0}, which are the children of vs in Gvs . In HOL this
is modelled as the list:5

C(vs) = FILTER (λ vs ′. vs → vs ′) Gvs

We now use Corollary 1 to prove the following theorem:

Theorem 2. For a factored transition system Π, and a lifted dependency graph Gvs

that is a DAG, the sublist diameter `(Π) satisfies the following inequality:

`(Π) ≤ Σvs∈Gvs
N(vs) (1)

where N(vs) = `(Π�vs)(ΣC∈C(vs)N(C) + 1).

Alternatively, in the HOL presentation:

` ALL_DISTINCT Gvs ∧ ALL_DISJOINT Gvs ⇒
∀Π.

transition-system Π ∧ D(Π.I) =
⋃

(set Gvs) ∧
top-sorted Gvs ⇒
`(Π) < SUM (MAP N Gvs) + 1

where N is defined as 6

transition-system Π ∧ top-sorted Gvs ⇒
N(vs) = `(Π�vs) × (SUM (MAP N C(vs)) + 1)

Proof. Again, our proof of this theorem follows a constructive approach where we be-
gin by assuming we have an action sequence π̇ ∈ A(Π) and a state s ∈ U(Π). The goal
of the proof is to find a witness sublist, π̇′, of π̇ such that ∀ vs ∈ Gvs . n(vs, π̇′) ≤ N(vs)
and e(s, π̇) = e(s, π̇′). We proceed by induction on lvs , a topologically sorted list of
nodes in Gvs . The base case is the empty list [], in which case D(Π) = ∅ and accord-
ingly `(Π) = 0.

In the step case, we assume the result holds for any system for which lvs is a topo-
logically sorted node list of one of its lifted dependency graphs. We then show that

5 top-sorted has a Π parameter and C has Π and Gvs as parameters hidden with overloading.
6 N has Π and Gvs as parameters hidden with overloading.

it also holds for Π, a system whose node list is vs :: lvs , where vs has no parents
(hence its position at the start of the sorted list). Since lvs is a topologically sorted
node list of a lifted dependency graph of Π�vs, the induction hypothesis applies. Ac-
cordingly, there is a π̇vs for Π�vs such that e(s, π̇vs) = e(s, π̇�vs), π̇vs �· π̇�vs, and
∀ K ∈ lvs . n(K, π̇′) ≤ N(K). Since vs :: lvs is topologically sorted, (vs) 6→ vs holds.
Let π̇′vs ≡ π̇vs H

vs
π̇. Therefore e(s, π̇′vs) = e(s, π̇) (using the same argument used in the

proof of Theorem 1). Furthermore, ∀K ∈ lvs . n(K, π̇′vs) ≤ N(K) and π̇′vs �· π̇. The
last step in this proof is to show that F (vs,

⋃
C(vs), π̇′vs) is the required witness, which

is justified because the generalised parent-child relation holds for Π, vs and
⋃
C(vs).

From Corollary 1 and because the relations =, ≤ and �· are transitive, we know that

– e(s, π̇) = e(s, F (vs,
⋃
C(vs), π̇′vs)),

– n(vs, F (vs,
⋃
C(vs), π̇′vs)) ≤ `(Π�vs)(ΣC∈C(vs)n(C, π̇′vs) + 1),

– F (vs,
⋃
C(vs), π̇′vs) �· π̇, and

– n(D(Π) \ vs, F (vs,
⋃
C(vs), π̇′vs)) ≤ n(D(Π) \ vs, π̇′vs).

Since ΣK∈lvs n(K, π̇′vs) = n(D(Π) \ vs, π̇′vs) is true, ∀ K ∈ lvs . n(K, π̇′vs) ≤ N(K)
is true, and n(vs, F (vs,

⋃
C(vs), π̇′vs)) ≤ `(Π�vs)(ΣC∈C(vs)N(C)) is true, therefore

F (vs,
⋃
C(vs), π̇′vs) is an action sequence demonstrating the needed bound.

4.1 A Bounding Algorithm

We now discuss an upper bounding algorithm that we prove is valid. Consider the func-
tion Nb, defined over the nodes of a lifted dependency DAG as:

Nb(vs) = b(Π�vs)(ΣC∈C(vs)Nb(C) + 1)

Note that Nb is a general form of the function N defined in Theorem 2, parameterised
over a base case function b : Π → N. Viewing Nb = Σvs∈Gvs Nb(vs) as an algo-
rithm, the following theorem shows that it calculates a valid upper bound for a factored
transition system’s sublist diameter if the base case calculation is a valid bound.

Theorem 3. For a base case function b : Π → N, if ∀Π.`(Π) ≤ b(Π) then `(Π) ≤
Nb(vs).

` (∀Π′. transition-system Π′ ⇒ `(Π′) ≤ b(Π′)) ⇒
∀Gvs.

ALL_DISTINCT Gvs ∧ ALL_DISJOINT Gvs ⇒
∀Π.

transition-system Π ∧ D(Π.I) =
⋃

(set Gvs) ∧
top-sorted Gvs ⇒
`(Π) < SUM (MAP Nb Gvs) + 1

where Nb is characterised by the following theorem7 as

7 Nb has Π and Gvs as parameters hidden with overloading.

(∀Π′. b(Π′�∅) = 0) ⇒
∀Π vs Gvs.

transition-system Π ∧ top-sorted Gvs ⇒
Nb(vs) = b(Π�vs) × (SUM (MAP Nb C(vs)) + 1)

Without any detailed analysis we are able to take b(Π) = 2|D(Π)| − 1. In other
words, an admissible base case is one less than the number of states representable by
the set of state variables of the system being evaluated. That is a valid upper bound for
both the recurrence and sublist diameters.

5 Bounds in Practice

In this section we provide an evaluation of the upper bounds produced by the algorithm
from Section 4.1. We first compare it to previously suggested compositional bounding
approaches in planning benchmarks. We also evaluate its performance on a practical
model checking problem.

5.1 Evaluating in Benchmarks from Automated Planning

S1

S2 S3

(a) A lifted dependency graph.
(b) The bounds computed by Nb versus Mb with
2|D(Π)| − 1 as a base function.

In this section we compare the bounds computed by Nb with the ones computed
using the algorithm suggested by Baumgartner et al [1] for treating design netlists.
This algorithm, and that in Rintanen and Gretton [15], both traverse the structure of
the factored transition system in a bottom-up way. By way of contrast, our algorithm
traverses the same structure top-down. Before we model the bottom-up calculation, we
need to define the concepts of ancestors and leaves.

Definition 13 (Leaves and Ancestors). We define the set of leaves L(Gvs) to contain
those vertices of Gvs from which there are no outgoing edges. We also write A(vs) to
denote the set of ancestors of vs in Gvs i.e. the set {vs0 | vs0 ∈ G ∧ vs0 → vs+},
where→+ is the transitive closure of→.

To model bottom-up calculation, consider the function

Mb(vs) = b(Π�vs) + (1 + b(Π�vs))ΣA∈A(vs)Mb(Π�A)

The bottom-up approach, Mb, can be described as Mb = Σvs∈L(Gvs)Mb(vs), where b
is a base case function.

Consider the lifted dependency DAG in Figure 3a. Given a base a function b, and
letting b(Π�Si

) be bi, the values of Nb(S2) and Nb(S3) are b2 and b3, respectively. The
value of Nb(S1) is b1+ b1b2+ b1b3. Accordingly the value of Nb = b1+ b1b2+ b1b3+
b2 + b3.

On the other hand, Mb(S1) = b1, Mb(S2) = b1 + b1b2 + b2 and Mb(S3) =
b1 + b1b3 + b1. Accordingly Mb = 2b1 + b1b2 + b1b3 + b2 + b3. The value of Mb has
an extra b1 term over that of Nb. This extra term is because Mb counts every ancestor
node in the lifted dependency graph as many times as the size of its posterity, which is a
consequence of the bottom-up traversal of the dependency graph. Figure 3b shows the
computed bounds of Nb versus Mb with the function 2|D(Π)| − 1 as the base function
for a 1030 different International Planning Competition benchmarks. That figure shows
that Mb computes looser bounds as it repeats counting the ancestor nodes unnecessarily.

5.2 Hotel Key Protocol

r = g = 5 190 662 1397 2532 4067 6002 8337 11072 14207 17742
k = g = 5 859 1661 2463 3265 4067 4869 5671 6473 7275 8077
r = k = 5 803 1619 2435 3251 4067 4883 5699 6515 7331 8147
Table 1: A table showing the bounds computed byNb for the hotel key example. Rows
1–3 show the bounds with keeping two of the parameters constant (= 5) and the third
ranging from 1–10.

We consider the verification of a safety property of the hotel key distribution pro-
tocol introduced by Jackson [9] and further discussed in [13,4]. To our knowledge this
domain has not previously been explored along with decompositional bounding tech-
niques. We model the problem in the Planning Domain Description Language [12].
There are three actions schemas representing the three categories of change in the
system’s state which are: (i) entering a room with a new key (enter-new-key),
(ii) checking in the hotel (check-in), and (iii) checking out (check-out). Note
that we omit the fourth action which is entering the room with its current key, because
it has no effect on the system’s state. We have a predicate safe, that is true of a room
while the safety property of that room is maintained. All rooms are initially safe, and
then the value of “safe” is set in the effect of enter-new-key, and reset in the effect
of check-in. The goal is to have at least one room that is entered by a guest who does
not occupy it and for which “safe” is true.

In our experiment, we parameterised instances of this problem by the number of:
guests (g), rooms (r) and keys per room (k). The initial state of an instance asserts:(i) the
types of the guests, the rooms and the keys, (ii) which key is owned by which rooms,
and (iii) an ordering of the keys such that the keys owned by a room form a series.
Table 1 shows the output of Nb on different instances, with an unverified base case

function based on invariants analysis.8 We computed the sets of variables that satisfy
the invariance condition with Fast Downward [8]. Each row shows the computed bounds
keeping two of the parameters constant and equal to 5, while the third parameter ranges
from 1-10. The computed upper bound increases linearly with the r and with g.

6 Related Work

The notions of diameter and recurrence diameter were introduced in Biere et al [3,2].
In this work they describe how to test whether k is the recurrence diameter using a SAT
formula of size O(k2). It was later shown by Kroening and Strichman [11] that this
test can be done using a SAT formula of size O(k log k). An inductive algorithm for
computing the recurrence diameter was introduced by Sheeran et al [17].

Other work exploits the structure or the type of system being verified for efficient
computation of the diameter as well as for obtaining tighter bounds on it. For example,
Ganai et al [7] show that an upper bound on the completeness threshold for checking
the safety of some software errors—such as array bound violations—can be computed
using a SAT formula of size O(k). Also Konnov et al [16] show how some compo-
nents in threshold-based distributed algorithms have diameters quadratic in the number
of transitions in the component. Most relevant to our work, Baumgartner et al [1,6]
show that the recurrence diameter can be used to calculate a bound for the diameter in
a decompositional way using design netlists. In 2013, Rintanen and Gretton [15] de-
scribed a similar method for calculating a transition system’s diameter in the context of
planning. The algorithms for calculating a bound in both of those works operate in a
bottom-up way.

7 Conclusion

We considered computing admissible completeness thresholds for model checking safety
properties in transition models with factored representations. We developed the concept
of sublist diameter, a novel, tighter overapproximation of diameter for the factored case.
We also developed a novel procedure for computing tighter bounds for factored systems
by exploiting compositionality, and have formally verified dominance and correctness
results associated with these.

The insights which led us to develop the sublist diameter followed from attempt-
ing to formalise the results in [15] . That effort helped us find a bug in their formal
justification of their approach, where they incorrectly theorise that the diameter can be
used directly to bound atomic components for compositional algorithms. Errors such as
those make a strong case for the utility of mechanical verification.

In future, we hope to find efficient procedures for efficiently computing/tightly-
approximating sublist diameters for the atomic subsystems in our compositional ap-
proach.

8 The point of this experiment is to show how the computed upper bound grows with different
parameters, regardless of the base case function used.

HOL4 Notation and Availability All statements appearing with a turnstile (`) are HOL4
theorems, automatically pretty-printed to LATEX. All our HOL scripts, experimental
code and data are available from https://MohammadAbdulaziz@bitbucket.
org/MohammadAbdulaziz/planning.git.

Acknowledgements We thank Daniel Jackson for suggesting applying diameter upper
bounding on the hotel key protocol verification.

References

1. Baumgartner, J., Kuehlmann, A., Abraham, J.: Property checking via structural analysis. In:
Computer Aided Verification. pp. 151–165. Springer (2002)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Ad-
vances in Computers 58, 117–148 (2003)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
TACAS. pp. 193–207 (1999)

4. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. In: Interactive Theorem Proving, First International Con-
ference, ITP 2010. pp. 131–146 (2010)

5. Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial
Intelligence 69(1-2), 165–204 (1994)

6. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification by tempo-
ral decomposition. In: Proceedings of 9th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA. pp.
17–24 (2009)

7. Ganai, M.K., Gupta, A.: Completeness in smt-based BMC for software programs. In: Design,
Automation and Test in Europe, DATE 2008, Munich, Germany, March 10-14, 2008. pp.
831–836 (2008)

8. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Re-
search 26, 191–246 (2006)

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press (2006)
10. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI. pp. 359–363 (1992)
11. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In: VMCAI. pp.

298–309 (2003)
12. Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.,

Wilkins, D.: PDDL: The Planning Domain Definition Language. Tech. rep., CVC TR-98-
003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)

13. Nipkow, T.: Verifying a hotel key card system. In: Barkaoui, K., Cavalcanti, A., Cerone, A.
(eds.) Theoretical Aspects of Computing (ICTAC 2006). Lecture Notes in Computer Science,
vol. 4281. Springer (2006), invited paper.

14. Rintanen, J.: Evaluation strategies for planning as satisfiability. In: Proc. 16th European Conf.
on Artificial Intelligence. pp. 682–687. IOS Press (2004)

15. Rintanen, J., Gretton, C.O.: Computing upper bounds on lengths of transition sequences. In:
International Joint Conference on Artificial Intelligence (2013)

16. Sastry, S., Widder, J.: Solvability-based comparison of failure detectors. In: 2014 IEEE 13th
International Symposium on Network Computing and Applications, NCA 2014, Cambridge,
MA, USA, 21-23 August, 2014. pp. 269–276 (2014)

17. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a
sat-solver. In: Formal Methods in Computer-Aided Design, Third International Conference,
FMCAD 2000, Austin, Texas, USA, November 1-3, 2000, Proceedings. pp. 108–125 (2000)

18. Slind, K., Norrish, M.: A brief overview of HOL4. In: Theorem Proving in Higher Order
Logics. LNCS, vol. 5170, pp. 28–32. Springer (2008)

19. Streeter, M.J., Smith, S.F.: Using decision procedures efficiently for optimization. In: Proc.
17th International Conference on Automated Planning and Scheduling. pp. 312–319. AAAI
Press (2007)

20. Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In: International
Joint Conference on Artificial Intelligence. pp. 1178–1185. Morgan Kaufmann Publishers
(1997)

