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Abstract
The goal of the LEDA project was to build an easy-to-use and extendable library of correct and
efficient data structures, graph algorithms and geometric algorithms. We report on the use of formal
program verification to achieve an even higher level of trustworthiness. Specifically, we report on an
ongoing and largely finished verification of the blossom-shrinking algorithm for maximum cardinality
matching.
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1 Introduction

This talk is a follow-up on two previous invited MFCS-talks given by the second author:

LEDA: A Library of Efficient Data Types and Algorithms in MFCS 1989 [32], and
From Algorithms to Working Programs: On the Use of Program Checking in LEDA in
MFCS 1998 [34].

After a review of these papers, we discuss the further steps taken to reach even higher
trustworthiness of our implementations.

Formal correctness proofs of checker programs [5, 40], and
Formal verification of complex graph algorithms [1].

The second item is the technical core of the paper: it reports on the ongoing and largely
finished verification of the blossom-shrinking algorithm for maximum cardinality matching
in Isabelle/HOL by the first author.

Personal Note by the Second Author: As this paper spans 30 years of work, the reader
might get the impression that I followed a plan. This is not the case. As a science, in this
case computer science, progresses, there are logical next steps. I took these steps. I did not
know 30 years ago, where the journey would lead me.

2 Level One of Trustworthiness: The LEDA Library of Efficient Data
Types and Algorithms

In 1989, Stefan Näher and the second author set out to build an easy-to-use and extendable
library of correct and efficient data structures, graph algorithms and geometric algorithms.
The project was announced in an invited talk at MFCS 1989 [32] and the library is available
from Algorithmic Solutions GmbH [28]. LEDA, the library of efficient data types and
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template <class NT>
void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& cost,

node_array<NT>& dist, node_array<edge>& pred)
{

node_pq<NT> PQ(G); // a priority queue for the nodes of G
node v; edge e;
dist[s] = 0; // distance from s to s is zero
PQ.insert(s,0); // insert s with value 0 into PQ
forall_nodes(v,G) pred[v] = nil; // no incoming tree edge yet
while (!PQ.empty()) // as long as PQ is non-empty
{ node u = PQ.del_min(); // let u be the node with minimum dist in PQ

NT du = dist[u]; // and du its distance
forall_adj_edges(e,u) // iterate over all edges e out of u
{ v = G.opposite(u,e); // makes it work for ugraphs

NT c = du + cost[e]; // distance to v via u
if (pred[v] == nil && v != s ) // v already reached?

PQ.insert(v,c); // first path to v
else if (c < dist[v]) PQ.decrease_p(v,c); // better path

else continue;
dist[v] = c; // store distance value
pred[v] = e; // and incoming tree edge

}
}

}

Figure 1 The LEDA implementation of Dijkstra’s algorithm: Note that the executable code
above is similar to a typical pseudo-code presentation of the algorithm.

algorithms, offers a flexible data type graph with loops for iterating over edges and nodes
and arrays indexed by nodes and edges. It also offers the data types required for graph
algorithms such as queues, stacks, and priority queues. It thus created a framework in which
graph algorithms can be formulated easily and naturally, see Figure 1 for an example. The
design goal was to create a system in which the difference between the pseudo-code used to
explain an algorithm and what constitutes an executable program is as small as possible.
The expectation was that this would ease the burden of the implementer and make it easier
to get implementations correct.

3 Level Two of Trustworthiness: Certifying Algorithms

Nevertheless, some implementations in the initial releases were incorrect, in particular, the
planarity test1; it declared some planar graphs non-planar. At around 1995, we adopted the
concept of certifying algorithms [34, 31] for the library and reimplemented all algorithms [35].
A certifying algorithm computes for each input a easy-to-check certificate (witness) that
demonstrates to the user that the output of the program for this particular input is correct;
see Figure 2. For example, the certifying planarity test returns a Kuratowski subgraph if it

1 Most of the implementations of the geometric algorithms were also incorrect in their first release as
we had naïvely used floating point arithmetic to implement real arithmetic and the rounding errors
invalidated the implementations of the geometric primitives. This lead to the development of the exact
computation paradigm for geometric computing by us and others [21, 46, 14, 45, 33]. In this paper, we
restrict to graph algorithms.
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Figure 2 The top figure shows the I/O behavior of a conventional program for IO-behavior (ϕ,ψ);
here ϕ is the precondition and ψ is the postcondition. The user feeds an input x satisfying ϕ(x)
to the program and the program returns an output y satisfying ψ(x, y). A certifying algorithm for
IO-behavior (ϕ,ψ) computes y and a witness w. The checker C accepts the triple (x, y, w) if and
only if w is a valid witness for the postcondition ψ(x, y), i.e., it proves ψ(x, y). (reprinted from [5])

declares the input graph non-planar and a (combinatorial) planar embedding if it declares the
input graph planar, and the maximum cardinality matching algorithm computes a matching
and an odd-set-cover that proves its optimality; see Figures 3 and 4. The state of the art of
certifying algorithms is described in [31]. We also implemented checker programs that check
the witness for correctness and argued that the checker programs are so simple that their
correctness is evident. From a pragmatic point of view, the goals of the project were reached
by 2010. The library was easy-to-use and extendable, the implementations were efficient,
and no error was discovered in any of the graph algorithms for several years despite intensive
use by a commercial and academic user community.

Note that, most likely, errors would not have gone undiscovered because of the use of
certifying algorithms and checker programs. Only if a module produced an incorrect output
and hence an invalid certificate and the checker program missed to uncover the invalidity of
the certificate would an error go unnoticed. Of course, the possibility is there and the phrase
“most likely” in the preceding sentence has no mathematical meaning.

Alternative libraries such as Boost and LEMON [44, 29] are available now and some
of their implementations are slightly more efficient than ours. However, none of the new
libraries pays the same attention to correctness. For example, all libraries allow floating
point numbers as weights and capacities in network algorithms, but only LEDA ensures that
the intricacies of floating point arithmetic do not invalidate the implementations; see [6]
and [35, Section 7.2].

4 Level Three of Trustworthiness: Formal Verification of Checkers

We stated above that the checker programs are so simple that their correctness is evident.
Shouldn’t they then be amenable to formal verification? Harald Ganzinger and the second
author attempted to do so at around 2000 and failed. About 10 years later (2011 – 2014)
Eyad Alkassar from the Verisoft Project [43], Sascha Böhme and Lars Noschinski from Tobias
Nipkow’s group at TU München, and Christine Rizkallah and the second author succeeded
in formally verifying some of the checker programs [5, 40]. In order to be able to talk about
formal verification of checker programs, we need to take a more formal look at certifying
algorithms.
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A matching in a graph G is a subset M of the edges of G such that no two share an endpoint.

An odd-set cover OSC of G is a labeling of the nodes of G with non-negative integers such that
every edge of G (which is not a self-loop) is either incident to a node labeled 1 or connects two
nodes labeled with the same i, i ≥ 2.

Let ni be the number of nodes labeled i and consider any matching N . For i, i ≥ 2, let Ni be
the edges in N that connect two nodes labeled i. Let N1 be the remaining edges in N . Then
|Ni| ≤ bni/2c and |N1| ≤ n1 and hence

|N | ≤ n1 +
∑
i≥2

bni/2c

for any matching N and any odd-set cover OSC . It can be shown that for a maximum cardinality
matching M there is always an odd-set cover OSC with

|M | = n1 +
∑
i≥2

bni/2c,

thus proving the optimality of M . In such a cover all ni with i ≥ 2 are odd, hence the name.

list<edge> MAX_CARD_MATCHING(graph G, node_array<int>& OSC )
computes a maximum cardinality matching M in G and returns it as a list of edges.
The algorithm ([12], [15]) has running time O(nm · α(n,m)).
An odd-set cover that proves the maximality of M is returned in OSC .

bool CHECK_MAX_CARD_MATCHING(graph G, list<edge> M, node_array<int> OSC )
checks whether M is a maximum cardinality matching in G and OSC is a proof of
optimality. Aborts if this is not the case.

Figure 3 The LEDA manual page for maximum cardinality matchings (reprinted from [34]).

We consider algorithms which take an input from a set X and produce an output in a set
Y and a witness in a set W . The input x ∈ X is supposed to satisfy a precondition ϕ(x),
and the input together with the output y ∈ Y is supposed to satisfy a postcondition ψ(x, y).
A witness predicate for a specification with precondition ϕ and postcondition ψ is a predicate
W ⊆ X × Y ×W , where W is a set of witnesses with the following witness property:

ϕ(x) ∧W(x, y, w) −→ ψ(x, y). (1)

The checker program C receives a triple2 (x, y, w) and is supposed to check whether it fulfills
the witness property. If ¬ϕ(x), C may do anything (run forever or halt with an arbitrary
output). If ϕ(x), C must halt and either accept or reject. It is required to accept ifW(x, y, w)
holds and is required to reject otherwise. This results in the following proof obligations.

Checker Correctness: We need to prove that C checks the witness predicate assuming that
the precondition holds, i.e., on input (x, y, w):

(i) If ϕ(x), C halts.
(ii) If ϕ(x) and W(x, y, w), C accepts (x, y, w), and if ϕ(x) and ¬W(x, y, w), C rejects the

triple.

2 We ignore the minor complication that X, Y , and W are abstract sets and programs handle concrete
representations.
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static bool return_false(string s)
{ cerr << "CHECK_MAX_CARD_MATCHING: " << s << "\n"; return false; }

bool CHECK_MAX_CARD_MATCHING(const graph& G, const list<edge>& M,
const node_array<int>& OSC)

{ int n = Max(2,G.number_of_nodes());
int K = 1;
array<int> count(n);
for (int i = 0; i < n; i++) count[i] = 0;
node v; edge e;

forall_nodes(v,G)
{ if ( OSC[v] < 0 || OSC[v] >= n )

return_false("negative label or label larger than n - 1");
count[OSC[v]]++;
if (OSC[v] > K) K = OSC[v];

}

int S = count[1];
for (int i = 2; i <= K; i++) S += count[i]/2;
if ( S != M.length() )

return_false("OSC does not prove optimality");

forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);

if ( v == w || OSC[v] == 1 || OSC[w] == 1 ||
( OSC[v] == OSC[w] && OSC[v] >= 2) ) continue;

return_false("OSC is not a cover");
}
return true;

}

Figure 4 The checker for maximum cardinality matchings (reprinted from [34]).

Witness Property: We need to prove implication (1).

In case of the maximum cardinality matching problem, the witness property states that
an odd-set cover OSC as defined in Figure 3 with |M | = n1 +

∑
i≥2bni/2c proves that the

matching M has maximum cardinality. Checker correctness amounts to the statement that
the program shown in Figure 4 is correct.

We proved the witness property using Isabelle/HOL [38]. For the checker correctness,
we used VCC [9] and later Simpl [42] and AutoCorres [16]. The latter approach has the
advantage that the entire verification can be performed within Isabelle. Simpl is a generic
imperative programming language embedded into Isabelle/HOL, which was designed as an
intermediate language for program verification. We implemented checkers both in Simpl and
C. Checkers written in Simpl were verified directly within Isabelle. For the checkers written
in C, we first translated from C to Isabelle using the C-to-Isabelle parser that was developed
as part of the seL4 project [22], and then used the AutoCorres tool developed at NICTA that
simplifies reasoning about C in Isabelle/HOL. Christine spent several months at NICTA to
learn how to use the tool. We verified the checkers for connectivity, maximum cardinality
matching, and non-planarity. In particular, for the non-planarity checker it was essential
that Lars Noschinski in parallel formalized basic graph theory in Isabelle [39].
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A disclaimer is in order here. We did not verify the C++ program shown in Figure 4.
Rather we verified a manual translation of this program into Simple or C, respectively. For
this translation, we assumed a very basic representation of graphs. The nodes are numbered
from 0 to n−1, the edges are numbered from 0 to m−1 with the edges incident to any vertex
numbered consecutively and arrays of the appropriate dimension are used for cross-referencing
and for encoding adjacency lists.

The verification attempt for the maximum cardinality checker shown in Figure 4 discovered
a flaw. Note that the program does not check whether the edges in M actually belong to G.
When we wrote the checker, we apparently took this for granted. The verification attempt
revealed the flaw.

We also considered going further and briefly tried to verify the LEDA maximum cardinality
matching algorithm [35, Section 7.7]. The program has 330 lines of code and the description
of the algorithm, its implementation and its correctness proof spans over 20 pages. We found
the task too daunting and, extrapolating from the effort required for the verification of the
checkers, estimated the effort as several man-years.

5 Level Four of Trustworthiness: Formal Verification of Complex
Algorithms

A decade later, we perform the formal verification of the blossom-shrinking algorithm for
maximum cardinality. We give a short account of the verification which will be described
in detail in our forthcoming publication [1]. On a high-level Edmond’s blossom-shrinking
algorithm [12] works as follows. The algorithm repeatedly searches for an augmenting path
with respect to the current matching. Initially, the current matching is empty. Whenever an
augmenting path is found, augmentation of the path increases the size of the matching by
one. If no augmenting path exists with respect to the current matching, the current matching
has maximum cardinality.

The search for an augmenting path is via growing alternating trees rooted at free vertices,
i.e. vertices not incident to an edge of the matching. The search is initialised by making
each free vertex a root of an alternating tree; the matched nodes are in no tree initially. In
an alternating tree, vertices at even depth are entered by a matching edge, vertices at odd
depth are entered by a non-matching edge, and all leaves have even depth. In each step of
the growth process, one considers a vertex, say u1, of even depth that is incident to an edge
{u1, u2} not considered before. If u2 is not in a tree yet, then one adds u2 (at odd level) and
its mate (at even level) under the current matching to the tree. If u2 is already in a tree and
has odd level then one does nothing as one simply has discovered another odd length path to
u2. If u2 is already in a tree and has even level then one has either discovered an augmenting
path (if u2 is in a different tree than u1) or a blossom (if u2 and u1 are in the same tree). In
the latter case, consider the tree paths from u2 and u1 back to their common root and let u3
be the lowest common ancestor of u2 and u1. The edge {u1, u2} plus the tree paths from u1
and u2 to u3 form an odd length cycle. One collapses all nodes on the cycle into a single node
and repeats the search for an augmenting path in the quotient (= shrunken) graph. If an
augmenting path is found in the quotient graph, it is lifted (refined) to an augmenting path
in the original graph. If no augmenting path exists in the quotient graph, no augmenting
path exists in the original graph. In this section, we describe in detail the algorithm outlined
above, and the process of formalising and verifying it in Isabelle/HOL.
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5.1 Isabelle/HOL
Isabelle/HOL [41] is a theorem prover for classical Higher-Order Logic. Roughly speaking,
Higher-Order Logic can be seen as a combination of functional programming with logic.
Isabelle’s syntax is a variation of Standard ML combined with (almost) standard mathematical
notation. Application of function f to arguments x1 . . . xn is written as f x1 . . . xn instead
of the standard notation f(x1, . . . , xn). We explain non-standard syntax in the paper where
it occurs.

Isabelle is designed for trustworthiness: following the LCF approach [36], a small kernel
implements the inference rules of the logic, and, using encapsulation features of ML, it
guarantees that all theorems are actually proved by this small kernel. Around the kernel,
there is a large set of tools that implement proof tactics and high-level concepts like algebraic
data types and recursive functions. Bugs in these tools cannot lead to inconsistent theorems
being proved since they all rely on the kernel only, but only to error messages when the
kernel refuses a proof. Isabelle/HOL comes with a rich set of already formalized theories,
among which are natural numbers and integers as well as sets and finite sets.

5.2 Preliminaries
An edge is a set of vertices with size 2. A graph G is a set of edges. A set of edgesM is a
matching iff ∀e, e′ ∈M. e ∩ e′ = ∅. In Isabelle/HOL that is represented as follows:

matching M ←→ (∀ e1 ∈ M. ∀ e2 ∈ M. e1 6= e2 −→ e1 ∩ e2 = {})

In may cases, a matching is a subset of a graph, in which case we call it a matching w.r.t.
the graph. For a graph G,M is a maximum matching w.r.t. G iff for any matchingM′ w.r.t.
G, we have that |M′| ≤ |M|.

5.3 Formalising Berge’s Lemma
A list of vertices u1u2 . . . un is a path w.r.t. a graph G iff every {ui, ui+1} ∈ G. A path
u1u2 . . . un is a simple path iff for every 1 ≤ i 6= j ≤ n, ui 6= uj . A list of vertices u1u2 . . . un

is an alternating path w.r.t. a set of edges E iff for some E′ (i) E′ = E or E′ = {e | e 6∈ E},
(ii) {ui, ui+1} ∈ E′ holds for all even numbers i, where 1 ≤ i < n, and (iii) {ui, ui+1} 6∈ E′
holds for all odd numbers i, where 1 ≤ i ≤ n. We call a list of vertices u1u2 . . . un an
augmenting path w.r.t. a matchingM iff u1u2 . . . un is an alternating path w.r.t. M and
u1, un 6∈

⋃
M. It is often the case that an augmenting path γ w.r.t. to a matchingM is

also a simple path w.r.t. a graph G, in which case we call the path an augmenting path w.r.t.
to the pair 〈G,M〉. Also, for two sets s and t, s⊕ t denotes the symmetric difference of the
two sets. We overload ⊕ to arguments which are lists in the obvious fashion.

B Theorem 1 (Berge’s Lemma). For a graph G, a matchingM is maximum w.r.t. G iff there
is not an augmenting path γ w.r.t. 〈G,M〉.

Our proof of Berge’s lemma is shorter than the standard proof. The standard proof consists
of three steps. First, for any two matchingsM andM′, every connected component of the
graphM⊕M′ is either (i) a singleton vertex, (ii) a path, or (iii) a cycle. Second, for a set of
edges C ⊆M⊕M′ s.t. |C ∩M| < |C ∩M′|, the edges from C form a path. Thirds, such
a set C of edges exists, if |M| < |M′|. We observe that it is much easier to directly show
that such a C exists and that all its edges can be arranged in a path, without having to
prove the first step about all connected components. We found this different proof during the
process of formalising the theorem, and finding this shorter proof was primarily motivated
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by making the formalisation shorter and more feasible. The discovery of simpler proofs or
more general theorem statements is one potential positive outcome of verifying algorithms,
and mathematics in general, in interactive theorem provers [3, 2, 10].

Algorithm 1: Find_Max_Matching(G,M)
γ := Aug_Path_Search(G,M)
if γ is some augmenting path

return Find_Max_Matching(G,M⊕ γ)
else

return M

Now consider Algorithm 1. Berge’s lemma implies the validity of that algorithm as a
method to compute maximum matchings in graphs. The validity of Algorithm 1 is stated in
the following corollary.

B Corollary 1. Assume that Aug_Path_Search(G,M) is an augmenting path w.r.t.
〈G,M〉, for any graph G and matchingM, iff G has an augmenting path w.r.t. 〈G,M〉. Then,
for any graph G, Find_Max_Matching(G, ∅) is a maximum matching w.r.t. G.

As shown in Corollary 1, Algorithm 1 depends on the function Aug_Path_Search which
is a sound and a complete procedure to compute augmenting paths in graphs.

In Isabelle/HOL, the first step is to formalise the path concepts from above. Paths and
alternating paths are defined recursively in a straightforward fashion. An augmenting path
is defined as follows:

augmenting_path M p ≡ (length p ≥ 2) ∧ alt_path M p
∧ hd p /∈ Vs M ∧ last p /∈ Vs M

The formalised statement of Berge’s lemma is as follows:

theorem Berge:
assumes

finite M and matching M and M ⊆ E
and
(∀ e∈E. ∃ u v. e = {u,v} ∧ u 6= v) and finite (Vs E)

shows (∃ p. augmenting_path M p ∧ path E p ∧ distinct p) ←→
(∃ M’ ⊆ E. matching M’ ∧ card M < card M’)

Note that in the formalisation when the paths need to be simple, such as in Berge’s lemma
above, we have the additional assumption that all vertices are pairwise distinct, denoted by
the Isabelle/HOL predicate distinct. Just to clarify Isabelle’s syntax: the lemma above has
two sets of assumptions, one on the matching and the other on the graph. The matching has
to be a finite set, which is a matching w.r.t. the given graph. The graph has to have edges
which only have two vertices, and its set of vertices has to be finite.

In Isabelle/HOL Algorithm 1 is formalised within the following locale.

locale find_max_match =
fixes aug_path_search::’a set set ⇒ ’a set set ⇒ (’a list) option and

E
assumes

aug_path_search_complete:
matching M ∧ M ⊆ E ∧ finite M ∧

(∃ p. path E p ∧ distinct p ∧ augmenting_path M p)
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=⇒ (∃ p. aug_path_search E M = Some p)
and
aug_path_search_sound:
matching M ∧ M ⊆ E ∧ finite M ∧ aug_path_search E M = Some p =⇒

path E p ∧ distinct p ∧ augmenting_path M p
and
graph: ∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v finite (Vs E)

A locale is a named context: definitions and theorems proved within locale find_max_match
can refer to the parameters and assumptions declared there. In this case, we need the
locale to identify the parameter aug_path_search of the locale, corresponding to the function
Aug_Path_Search, which is used in Algorithm 1. The function aug_path_search should
take as input a graph and a matching. It should return an (’a list) option typed value.
Generally speaking, the value of an ’a option valued term could be in one of two forms:
either Some x, or None, where x is of type ’a. In the case of aug_path_search, it should return
either Some p, where p is a path in case an augmenting path is found, or None, otherwise.
There is also the function the, which given a term of type ’a option, returns x, if the given
term is Some x, and which is undefined otherwise. Within that locale, the definition of
Algorithm 1 and its verification theorem are as follows. Note that the correction theorem
has four conclusions: the algorithm returns a subset of the graph, that subset is a matching,
that matching is finite and the cardinality of any other matching is bounded by the size of
the returned matching.

find_max_matching M =
(if (∃ p. aug_path_search E M = Some p) then

(find_max_matching (M ⊕ (set (edges_of_path (the (aug_path_search E M))))))
else M)

lemma find_max_matching_works:
shows (find_max_matching {}) ⊆ E

matching (find_max_matching {})
finite (find_max_matching {})
∀ M. matching M ∧ M ⊆ E ∧ finite M −→ card M ≤ card (find_max_matching {})

Functions defined within a locale are parameterised on the constants which are declared
in the locale’s definition. When a function is used outside a locale, these parameters must be
specified. So, if find_max_matching is used outside the locale above, it should take as a param-
eter a function which computes augmenting paths. Similarly, theorems proven within a locale
implicitly have the assumptions of the locale. So if use the lemma find_max_matching_works,
we would have to prove that the functional argument to find_max_matching satisfies the as-
sumptions of the locale, i.e. that argument is a sound and complete procedure for computing
augmenting paths. The way theorems from locales are used will be clearer in the next section
when we refer to the function find_max_matching and use the lemma find_max_matching_works
outside of the locale find_max_match. The use of locales for performing gradual refinement of
algorithms allows to focus on the specific aspects of the algorithm relevant to a refinement
stage, with the rest of the algorithm abstracted away.

5.4 Verifying that Blossom Contraction Works
In Corollary 1, which specifies the soundness of Find_Max_Matching, we have not
explicitly specified the function Aug_Path_Search. Indeed, we have only specified what its
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output has to conform to. We now refine that specification and describe Aug_Path_Search
algorithmically.

Firstly, for a function f and a set s, let fLsM denote the image of f on s. Also, for a set
of edges E, and a function f , the quotient E/f is the set {fLeM | e ∈ E}. We now introduce
the concepts of a blossom. A list of vertices u1u2 . . . un is called a cycle if 3 < n and un = u1,
and we call it an odd cycle if n is even. A pair 〈u1u2 . . . ui−1, uiui+1 . . . un〉 is a blossom
w.r.t. a matching M iff (i) uiui+1 . . . un is an odd cycle, (ii) u1u2 . . . un is an alternating
path w.r.t.M, and (iii) u1 6∈

⋃
M. We also refer to u1u2 . . . ui as the stem of the blossom.

In many situations we have a pair 〈u1u2 . . . ui−1, uiui+1 . . . un〉 which is a blossom w.r.t. a
matchingM where u1u2 . . . ui−1uiui+1 . . . un−1 is also a simple path w.r.t. a graph G and
{un−1, un} ∈ G. In this case we call it a blossom w.r.t. 〈G,M〉.

Based on the above definitions, we prove that contracting (i.e. shrinking) the odd cycle
of a blossom preserves the existence of an augmenting path, which is the second main result
needed to prove the validity of the blossom-shrinking algorithm, after Berge’s lemma.

B Theorem 2. Consider a graph G and a vertex u 6∈
⋃
G. Let for a set s, the function Ps

be defined as Ps(x) = if x ∈ s then u else x. Then, for a blossom 〈γ,C〉 w.r.t. 〈G,M〉, if s
is the set of vertices in C, then we have an augmenting path w.r.t. 〈G,M〉 iff there is an
augmenting path w.r.t. 〈G/Ps,M/Ps〉.

Theorem 2 is used in most expositions of the blossom-shrinking algorithm. In our proof
for the forward direction (if an augmenting path exists w.r.t. 〈G,M〉, then there is an
augmenting path w.r.t. 〈G/Ps,M/Ps〉, i.e. w.r.t. the quotients), we follow a standard
textbook approach [23]. In our proof for the backward direction (an augmenting path w.r.t.
the quotients can be lifted to an augmenting path w.r.t. the original graph) we define an
(almost) executable function refine that does the lifting.3 We took the choice of explicitly
defining that function with using it in the final algorithm in mind. This is similar to the
approach used in the informal proof of soundness of the variant of the blossom-shrinking
algorithm used in LEDA [35].

Now, using Theorem 2, one can show that Algorithm 2 is a sound and complete procedure
for computing augmenting paths.

Algorithm 2: Aug_Path_Search(G,M)
if Compute_Blossom(G,M) is a blossom 〈γ,C〉 w.r.t. 〈G,M〉

return refine(Aug_Path_Search(G/PC ,M/PC))
else if Compute_Blossom(G,M) is an augmenting path w.r.t. 〈G,M〉

return Compute_Blossom(G,M)
else

return no augmenting path found

The soundness and completeness of this algorithm assumes that Compute_Blossom
can successfully compute a blossom or an augmenting path in a graph iff either one exists.
This is formally stated as follows.

B Corollary 2. Assume that, for a graph G and a matchingM w.r.t. G, there is a blossom or an
augmenting path w.r.t. 〈G,M〉 iff Compute_Blossom(G,M) is a blossom or an augmenting

3 The function refine, as defined later, is executable except for a choice operation.
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path w.r.t. 〈G,M〉. Then for any graph G and matchingM, Aug_Path_Search(G,M)
is an augmenting path w.r.t. 〈G,M〉 iff there is an augmenting path w.r.t. 〈G,M〉.

To formalise that in Isabelle/HOL, an odd cycle and a blossom are defined as follows:

odd_cycle p ≡ (length p ≥ 3) ∧ odd (length (edges_of_path p)) ∧ hd p = last p

blossom M stem C ≡ alt_path M (stem @ C) ∧
distinct (stem @ (butlast C)) ∧ odd_cycle C ∧ hd (stem @ C) /∈ Vs M ∧
even (length (edges_of_path (stem @ [hd C])))

In the above definition @ stands for list concatenation and edges_of_path is a function which,
given a path, returns the list of edges constituting the path.

To define the function refine that refines a quotient augmenting path to a concrete one or
to formalise the theorems showing that contracting blossoms preserves augmenting paths we
first declare the following locale:

locale quot =
fixes P s u
assumes ∀ v∈s. P v = v and u /∈s and (∀ v. v /∈s −→ P v = u)

That locale fixes a function P, a set of vertices s and a vertex u. The function P maps all
vertices from s to the given vertex u.

Now, we formalise the function refine which lifts an augmenting path in a quotient graph
to an augmenting path in the concrete graph. The function refine takes an augmenting path
p in the quotient graph and returns it unchanged if it does not contain the vertex u and
deletes u and splits p into two paths p1 and p2 otherwise. In the latter case, p1 and p2
are passed to replace_cycle. This function first defines two auxiliary paths stem2p2 and
p12stem using the function stem2vert_path. Let us have a closer look at the path stem2p2.
stem2vert_path with last argument hd p2 uses choose_con_vert to find a neighbor of hd p2
on the cycle C. It splits the cycle at this neighbor and then returns the path leading to the
base of the blossom starting with a matching edge. Finally, replace_cycle glues together p1,
p2 and either stem2p2 and p12stem to obtain an augmenting path in the concrete graph.

choose_con_vert vs E v ≡ (SOME v’. v’ ∈ vs ∧ {v, v’} ∈ E)

stem2vert_path C E M v ≡
let find_pfx’ = (λC. find_pfx ((=) (choose_con_vert (set C) E v)) C) in

if (last (edges_of_path (find_pfx’ C)) ∈ M) then
(find_pfx’ C)

else
(find_pfx’ (rev C))

replace_cycle C E M p1 p2 ≡
let stem2p2 = stem2vert_path C E M (hd p2);

p12stem = stem2vert_path C E M (last p1) in
if p1 = [] then

stem2p2 @ p2
else

(if p2 = [] then
p12stem @ (rev p1)

else
(if {u, hd p2} /∈ quotG M then
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p1 @ stem2p2 @ p2
else

(rev p2) @ p12stem @ (rev p1)))

refine C E M p ≡
if (u ∈ set p) then

(replace_cycle C E M (fst (pref_suf [] u p)) (snd (pref_suf [] u p)))
else p

In Isabelle/HOL the two directions of the equivalence in Theorem 2 are formalised as
follows:

theorem quot_apath_to_apath:
assumes

odd_cycle C and alt_path M C and distinct (tl C) and path E C
and
augmenting_path (quotG M) p’ and distinct p’ and path (quotG E) p’
and
matching M and M ⊆ E
and
s = (Vs E) - set C
and
∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v

shows augmenting_path M (refine C E M p’) ∧ path E (refine C E M p’) ∧
distinct (refine C E M p’)

theorem aug_path_works_in_contraction:
assumes

path E (stem @ C) and blossom M stem C
and
augmenting_path M p and path E p and distinct p
and
matching M and M ⊆ E and finite M
and
s = (Vs E) - set C and u /∈ Vs E
and
∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v and finite (Vs E)

shows ∃ p’. augmenting_path (quotG M) p’ ∧ path (quotG E) p’ ∧ distinct p’

A main challenge with formalising Theorem 2 in Isabelle/HOL is the lack of automation
for handling symmetries in its proof.

To formalise Algorithm 2 we use a locale to assume the existence of the function which
computes augmenting paths or blossoms, iff either one exist. That function is called
blos_search in the locale declaration. Its return type and the assumptions on it are as
follows:

datatype ’a blossom_res =
Path (aug_path: "’a list") | Blossom (stem_vs: "’a list") (cycle_vs: "’a list")

bloss_algo_complete:
(((∃ p. path E p ∧ distinct p ∧ augmenting_path M p)

∨ (matching M ∧ (∃ stem C. path E (stem @ C) ∧ blossom M stem C))))
=⇒ (∃ blos_comp. blos_search E M = Some blos_comp)

bloss_algo_sound:
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(∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v) ∧ blos_search E M = Some (Path p)
=⇒ (path E p ∧ distinct p ∧ augmenting_path M p)

blos_search E M = Some (Blossom stem C)
=⇒ (path E (stem @ C) ∧ (matching M −→ blossom M stem C))

The locale also fixes a function create_vert which creates new vertex names to which vertices
from the odd cycle are mapped during contraction. Within that locale, we define Algorithm 2
and prove its soundness and completeness theorems, which are as follows:
quotG E ≡ (quot_graph P E) - {{u}}

find_aug_path E M =
(case blos_search E M of Some blossom_res ⇒

case blossom_res of Path p ⇒ Some p
| Blossom stem cyc ⇒

let u = create_vert (Vs E);
s = Vs E - (set cyc);
quotG = quot.quotG (quot_fun s u) u;
refine = quot.refine (quot_fun s u) u cyc E M

in (case find_aug_path (quotG E) (quotG M) of Some p’ ⇒ Some (refine p’)
| _ ⇒ None)

| _ ⇒ None)

lemma find_aug_path_sound:
assumes

matching M and M ⊆ E and finite M
and
∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v and finite (Vs E)
and
find_aug_path E M = Some p

shows augmenting_path M p ∧ path E p ∧ distinct p

lemma find_aug_path_complete:
assumes

augmenting_path M p and path E p and distinct p
and
matching M and M ⊆ E and finite M
and
∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v and finite (Vs E)"

shows ∃ p’. find_aug_path E M = Some p’

Note that in find_aug_path, we instantiate both arguments P an s of the locale quot to
obtain the quotienting function quotG and the function for refining augmenting path refine.

Lastly, what follows shows the validity of instantiating the functional argument of
find_max_matching with find_aug_path, which gives us the following soundness theorem of
the resulting algorithm.

lemma find_max_matching_works:
assumes

finite (Vs E) and ∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v
shows

find_max_match.find_max_matching find_aug_path E {} ⊆ E
matching (find_max_match.find_max_matching find_aug_path E {})
finite (find_max_match.find_max_matching find_aug_path E {})
∀ M. matching M ∧ M ⊆ E ∧ finite M

−→ card M ≤ card (find_max_match.find_max_matching find_aug_path E {})
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5.5 Computing Blossoms and Augmenting Paths
Until now, we have only assumed the existence of the function Compute_Blossom, which
can compute augmenting paths or blossoms, if any exist in the graph. We now refine that
to an algorithm which, given two alternating paths resulting from the ascent of alternating
trees, returns either an augmenting path or a blossom.

We first introduce some notions and notation. For a list l, let |l| be the length of l. For a
list l and a natural number n, let drop n l denote the list l, but with the first n elements
dropped. For a list l, let h :: l denote adding an element h to the front of a list l. For a
non-empty list l, let first l and last l denote the first and last elements of l, respectively.
Also, for a list l, let rev l denote its reverse. For two lists l1 and l2, let l1_l2 denote their
concatenation. Also, let longest_disj_pref l1 l2 denote the pair of lists 〈l′1, l′2〉, where l′1 and
l′2 are the longest disjoint prefixes of l1 and l2, respectively, s.t. last l′1 = last l′2. Note:
longest_disj_pref l1 l2 is only well-defined if there is are l′1, l′2, and l s.t. l1 = l′1_l and
l2 = l′2_l, and if both l′1 and l′2 are disjoint except at their endpoints.

We now are able to state the following two lemmas concerning the construction of a
blossom or an augmenting path given paths resulting from alternating trees search.

B Lemma 1. If γ1 and γ2 are both (i) simple paths w.r.t. G, (ii) alternating paths w.r.t.
M, and (iii) of odd length, and if we have that (iv) last γ1 = last γ2, (v) last γ1 6∈

⋃
M,

(vi) {first γ1, first γ2} ∈ G, (vii) {first γ1, first γ2} 6∈ M, and (viii) longest_disj_pref γ1 γ2 is
well-defined and 〈γ′1, γ′2〉 = longest_disj_pref γ1 γ2, then 〈rev(drop (|γ′1|−1) γ1), (rev γ′1)_γ′2〉
is a blossom w.r.t. 〈G,M〉.

B Lemma 2. If γ1 and γ2 are both (i) simple paths w.r.t. G, (ii) alternating paths w.r.t. M,
(iii) of odd length, and (iv) disjoint, and if we have that (v) last γ1 6∈

⋃
M, (vi) last γ2 6∈

⋃
M,

(vii) last γ1 6= last γ2, (viii) {first γ1, first γ2} ∈ G, and (ix) {first γ1, first γ2} 6∈ M, then
(rev γ1)_γ2 is an augmenting path w.r.t. 〈G,M〉.

Based on the above lemmas we refine the algorithm Compute_Blossom as shown in
Algorithm 3.

Algorithm 3: Compute_Blossom(G,M)
if ∃e ∈ G.e ∩

⋃
M = ∅

return Augmenting path choose {e | e ∈ G ∧ e ∩
⋃
M = ∅}

else if compute_alt_path(G,M) = 〈γ1, γ2〉
if last γ1 6= last γ2

return Augmenting path (rev γ1)_γ2
else
〈γ′1, γ′2〉 = longest_disj_pref γ1 γ2
return Blossom 〈rev(drop (|γ′1| − 1) γ1), (rev γ′1)_γ′2〉

else
return No blossom or augmenting path found

The following corollary shows the conditions under which Compute_Blossom works.

B Corollary 3. Assume the function compute_alt_path(G,M) returns two lists of vertices
〈γ1, γ2〉 s.t. both lists are (i) simple paths w.r.t. G, (ii) alternating paths w.r.t.M, and (iii) of
odd length, and also (iv) last γ1 6∈

⋃
M, (v) last γ2 6∈

⋃
M, (vi) {first γ1, first γ2} ∈ G, and

(vii) {first γ1, first γ2} 6∈ M, iff two lists of vertices with those properties exist. Then there is
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a blossom or an augmenting path w.r.t. 〈G,M〉 iff Compute_Blossom(G,M) is a blossom
or an augmenting path w.r.t. 〈G,M〉.

In Isabelle/HOL, to formalise the function Compute_Blossom, we firstly defined a function,
longest_disj_pfx, which finds the longest common prefix in a straightforward fashion with a
quadratic wort-case runtime. The formalised versions of Lemma 1 and 2, which show that
the output of longest_disj_pfx can be used to construct a blossom or an augmenting path
are as follows:

lemma common_pfxs_form_blossom:
assumes

(Some pfx1, Some pfx2) = longest_disj_pfx p1 p2"
and
p1 = pfx1 @ p and p2 = pfx2 @ p"
and
alt_path M p1 and alt_path M p2 and last p1 /∈ Vs M and {hd p1, hd p2} ∈ M"
and
hd p1 6= hd p2"
and
even (length p1) and even (length p2)
and
distinct p1 and distinct p2
and
matching M

shows blossom M (rev (drop (length pfx1) p1)) (rev pfx1 @ pfx2)

lemma construct_aug_path:
assumes

set p1 ∩ set p2 = {}
and
p1 6= [] and p2 6= []
and
alt_path M p1 and alt_path M p2 and last p1 /∈ Vs M and last p2 /∈ Vs M
and
{hd p1, hd p2} ∈ M and
and
even (length p1) and even (length p2)

shows augmenting_path M ((rev p1) @ p2)

The function Compute_Blossom is formalised as follows:

"compute_blossom G M ≡
(if (∃ e. e ∈ unmatched_edges G M) then

let
singleton_path =

(SOME p. ∃ v1 v2. p = [v1 ,v2] ∧ {v1, v2} ∈ unmatched_edges G M)
in

Some (Path singleton_path)
else
case compute_alt_path G M

of Some (p1,p2) ⇒
(if (set p1 ∩ set p2 = {}) then

Some (Path ((rev p1) @ p2))
else

(let
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(pfx1, pfx2) = longest_disj_pfx p1 p2;
stem = (rev (drop (length (the pfx1)) p1));
cycle = (rev (the pfx1) @ (the pfx2))

in
(Some (Blossom stem cycle))))

| _ ⇒ None)"

We use a locale again to formalise that function. That locale parameterises it on a function
that searches for alternating paths and poses the soundness and completeness assumptions for
that alternating path search function. This function is equivalent to the unspecified function
compute_alt_path in Corollary 3 and locale’s assumptions on it are formalised statements of
the seven assumptions on compute_alt_path in Corollary 3.

5.6 Computing Alternating Paths
Lastly, we refine the function compute_alt_path to an algorithmic specification. The algo-
rithmic specification of that function performs the alternating tree search, see Algorithm 4.
If the function positively terminates, i.e. finding two vertices with even labels, returns two al-
ternating paths by ascending the two alternating trees to which the two vertices belong. This
tree ascent is performed by the function follow . That function takes a functional argument
f and a vertex, and returns the singleton list [u] if f(u) = None, and u :: (follow f (f(u)))
otherwise.

Algorithm 4: compute_alt_path(G,M)
ex = ∅ // Set of examined edges

foreach u ∈
⋃
G

label u = None
parent u = None

U =
⋃
G \

⋃
M // Set of unmatched vertices

foreach u ∈ U
label u = 〈u, even〉

while (G \ ex) ∩ {e | ∃u ∈ e, r ∈
⋃
G.label u = 〈r, even〉} 6= ∅

// Choose a new edge and labelled it examined

{u1, u2} = choose (G \ ex) ∩ {{u1, u2} | ∃r.label u1 = 〈r, even〉}
ex = ex ∪ {{u1, u2}}
if label u2 = None

// Grow the discovered set of edges from r by two

u3 = choose {u3 | {u2, u3} ∈ M}
ex = ex ∪ {{u2, u3}}
label u2 = 〈r, odd〉; label u3 = 〈r, even〉; parent u2 = u1; parent u3 = u2

else if ∃s ∈
⋃
G.label u2 = 〈s, even〉

// Return two paths from current edge’s tips to unmatched vertex(es)

return 〈follow parent u1, follow parent u2〉
return No paths found

The soundness and completeness of Algorithm 4 is stated as follows.

B Theorem 3. The function compute_alt_path(G,M) returns two lists of vertices 〈γ1, γ2〉
s.t. both lists are (i) simple paths w.r.t. G, (ii) alternating paths w.r.t. M, and (iii) of
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odd length, and also (iv) last γ1 6∈
⋃
M, (v) last γ2 6∈

⋃
M, (vi) {first γ1, first γ2} ∈ G, and

(vii) {first γ1, first γ2} 6∈ M, iff two lists of vertices with those properties exist.

The primary difficulty with proving this theorem is identifying the loop invariants, which
are as follows:

(i) For any vertex u, if for some r, label u = 〈r, even〉, then the vertices in the list
follow parent u have labels that alternate between 〈r, even〉 and even 〈r, odd〉.

(ii) For any vertex u1, if for some r and some l, we have label u1 = 〈r, l〉, then the list
follow parent u1, made of the vertices list u1u2 . . . un, has the following property: if
label ui = 〈r, even〉 and label ui+1 = 〈r, odd〉, for some r, then {ui, ui+1} ∈ M, otherwise,
{ui, ui+1} 6∈ M.

(iii) The relation induced by the function parent is well-founded.
(iv) For any {u1, u2} ∈ M, label u1 = None iff label u2 = None.
(v) For any u1, if label u1 = None then parent u2 6= u1, for all u2.
(vi) For any u, if label u 6= None, then last (follow parent u) 6∈

⋃
M.

(vii) For any u, if label u 6= None, then label (last (follow parent u)) = 〈r, even〉, for some r.
(viii) For any {u1, u2} ∈ M, if label u1 6= None, then {u1, u2} ∈ ex.
(ix) For any u, follow parent u is a simple path w.r.t. G.
(x) Suppose we have two vertex lists γ1 and γ2, s.t. both lists are (i) simple paths w.r.t.
G, (ii) alternating paths w.r.t.M, and (iii) of odd length, and also (iv) last γ1 6∈

⋃
M,

(v) last γ2 6∈
⋃
M, (vi) {first γ1, first γ2} ∈ G, and (vii) {first γ1, first γ2} 6∈ M. Then

there is at least an edge from the path rev γ1_γ2 which is a member of neitherM nor
ex.4

To formalise Algorithm 4 in Isabelle/HOL, we first define the function which follows a
vertex’s parent as follows:

follow v = (case (parent v) of Some v’ ⇒ v # (follow v’) | _ ⇒ [v])

Again, we use a locale to formalise that function, and that locale fixes the function parent.
Note that the above function is not well-defined for all possible arguments. In particular, it
is only well-defined if the relation between pairs of vertices induced by the function parent is
a well-founded relation. This assumption on parent is a part of the locale’s definition.

Then, we then formalise compute_alt_path as follows:

compute_alt_path ex par flabel =
(if (∃ v1 v2. {v1, v2} ∈ G - ex ∧ (∃ r. flabel v1 = Some (r, Even))) then

let
(v1,v2) = (SOME (v1,v2). {v1, v2} ∈ G - ex ∧

(∃ r. flabel v1 = Some (r, Even)));
ex’ = insert {v1, v2} ex;
r = (SOME r. flabel v1 = Some (r, Even))

in
(if flabel v2 = None ∧ (∃ v3. {v2, v3} ∈ M) then

let
v3 = (SOME v3. {v2, v3} ∈ M);
par’ = par(v2 := Some v1, v3 := Some v2);
flabel’ = flabel(v2 := Some (r, Odd), v3 := Some (r, Even));

4 The hypothesis of this invariant is equivalent to the existence of an augmenting path or a blossom w.r.t.
〈G,M〉.
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ex’’ = insert {v2, v3} ex’;
return = compute_alt_path ex’’ par’ flabel’

in
return

else if ∃ r. flabel v2 = Some (r, Even) then
let

r’ = (SOME r’. flabel v2 = Some (r’, Even));
return = Some (parent.follow par v1, parent.follow par v2)

in
return

else
let

return = None
in

return)
else

let
return = None

in
return)

Note that we do not use a while combinator to represent the while loop: instead we
formalise it recursively, passing the context along recursive calls. In particular, we define it
as a recursive function which takes as arguments the variables representing the state of the
while loop, namely, the set of examined edges ex, the parent function par, and the labelling
function flabel.

5.7 Discussion
The algorithm in LEDA differs from the description above in one aspect. If no augmenting
path is found, an odd-set cover is constructed proving optimality. Also the correctness proof
uses the odd-set cover instead of the fact that an augmenting path exists in the original
graph if and only if one exists in the quotient graph.

For an efficient implementation, the shrinking process and the lifting of augmenting paths
are essential. The shrinking process is implemented using a union-find data structure and
the lifting is supported by storing additional information with the edge that closes the cycle
in a blossom [35].

6 Level Five of Trustworthiness: Extraction of Efficient Executable
Code

In this section we examine the process of obtaining trustworthy executable and efficient code
from algorithms verified in theorem provers. First we discuss the problem in general and
then we examine our formalization of the blossom-shrinking algorithm.

Most theorem provers are connected to a programming language of some sort. Frequently,
as in the case of Isabelle/HOL, that programming language is a subset of the logic and
close to a functional programming language. The theorem prover will usually support the
extraction of actual code in some programming language. Isabelle/HOL supports Standard
ML, Haskell, OCaml and Scala.

To show that code extraction “works”, here are some random non-trivial examples of
verifications that have resulted in reasonably efficient code: Compilers for C [30] and for
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ML [24], a SPIN-like model checker [13], network flow algorithms [27] and the Berlekamp-
Zassenhaus factorization algorithm [11].

We will now discuss some approaches to obtaining code from function definitions in a
theorem prover. In the ACL2 theorem prover all functions are defined in a purely functional
subset of Lisp and are thus directly executable. In other systems, code generation involves
an explicit translation step. The trustworthiness of this step varies. Probably the most
trustworthy code generator is that of HOL4, because its backend is a verified compiler for
CakeML [24], a dialect of ML. The step from HOL to CakeML is not verified once and for
all, but every time it is run it produces a theorem that can be examined and that states
the correctness of this run [37]. The standard code generator in Isabelle/HOL is unverified
(although its underlying theory has been proved correct on paper [19]). There is ongoing
work to replace it with a verified code generator that produces CakeML [20].

So far we have only considered purely functional code but efficient algorithms often
make use of imperative features. Some theorem provers support imperative languages
directly, e.g. Java [4]. We will now discuss how to generate imperative code from purely
functional one. Clearly the code generator must turn the purely functional definitions
into more imperative ones. The standard approach [7, 37] is to let the code generator
recognize monadic definitions (a purely functional way to express imperative computations)
and implement those imperatively. This is possible because many functional programming
languages do in fact offer imperative features as well.

Just as important as the support for code extraction is the support for verified stepwise
refinement of data types and algorithms by the user. Data refinement means the replacement
of abstract data types by concrete efficient ones, e.g. sets by search trees. Algorithm
refinement means the stepwise replacement of abstract high-level definitions that may not
even be executable by efficient implementations. Both forms of refinement are supported
well in Isabelle/HOL [17, 25, 26].

We conclude this section with a look at code generation from our formalization of the
blossom-shrinking algorithm. It turns out that our formalization is almost executable as is.
The only non-executable construct we used is SOME x. P that denotes some arbitrary x that
satisfies the predicate P. Of course one can hide arbitrarily complicated computations in such
a contruct but we have used it only for simple nondeterministic choices and it will be easy
to replace. For example, one can obtain an executable version of function choose_con_vert
(see Section 5.4) by defining a function that searches the vertex list vs for the first v’ such
that {v, v’} ∈ E. This is an example of algorithm refinement. To arrive at efficient code for
the blossom-shrinking algorithm as a whole we will need to apply both data and algorithm
refinement down to the imperative level. At least the efficient implementations referred to
above, just before Section 5.1, are intrinsically imperative.

Finally let us note that instead of code generation it is also possible to verify existing
code in a theorem prover. This was briefly mentioned in Section 4 and Charguéraud [8] has
followed this approach quite successfully.

7 The Future

The state of the art in the verification of complex algorithms has improved enormously over
the last decade. Yet there is still a lot to do on the path to a verified library such as LEDA.
Apart from the shere amount of material that would have to be verified there is the challenge
of obtaining trustworthy code that is of comparable efficiency. This requires trustworthy
code generation for a language such C or C++, including the memory management. This is
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a non-trivial task, but some of the pieces of the puzzle, like a verified compiler, are in place
already.
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