
A Formal Analysis of RANKING1

Mohammad Abdulaziz # �2

King’s College London, United Kingdom3

Technische Universität München, Germany4

Christoph Madlener #�5

Technische Universität München, Germany6

Abstract7

We describe a formal correctness proof of RANKING, an online algorithm for online bipartite8

matching. An outcome of our formalisation is that it shows that there is a gap in all combinatorial9

proofs of the algorithm. Filling that gap constituted the majority of the effort which went into10

this work. This is despite the algorithm being one of the most studied algorithms and a central11

result in theoretical computer science. This gap is an example of difficulties in formalising graphical12

arguments which are ubiquitous in the theory of computing.13

2012 ACM Subject Classification Theory of computation; Mathematics of computing14

Keywords and phrases Matching Theory, Formalized Mathematics, Online Algorithms15

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2316

Funding Mohammad Abdulaziz: Part of this work was funded by DFG Koselleck Grant NI 491/16-17

118

1 Introduction19

Matching is a classical problem in computer science, operations research, graph theory, and20

combinatorial optimisation. In short, in this problem, given an undirected graph, one tries to21

compute a subset of the edges of this graph, s.t. no two edges are incident on the same vertex.22

This subset is usually optimised w.r.t. a given objective, e.g. matching cardinality, sum of23

weights of edges in the matching, etc. An important special case of matching problems is24

maximum cardinality matching in bipartite graphs. It is one of the first problems to be25

addressed in combinatorial optimistation, where, for instance, the Hungarian method was26

invented in 1955 to solve it in the edge-weighted setting [1]. The online version of that27

problem, i.e. the version in which one of the parties of the graphs arrive online, one vertex28

at a time, along with its incident edges, has received special attention. This is because the29

problem can model many economic situations, most-notably Google’s Adwords market [15].30

The most basic version of online bipartite matching is the one where vertices and edges31

have no weights. That problem was studied by Karp, Vazirani, and Vazirani (henceforth,32

KVV) [14], where they devised the so-called RANKING algorithm. In that paper, KVV33

showed that their algorithm can solve the online problem with a competitive ratio, i.e.34

the average case ratio of the online algorithm’s solution quality compared to the best35

offline algorithm, of 1− 1/e. They also showed that this ratio is the best possible for any36

randomised online bipartite matching algorithm. The analysis of the RANKING algorithm37

been continuously studied, where authors have mainly tried to simplify the algorithm’s original38

correctness proof, i.e. the proof that it achieves a 1−1/e competitive ratio [10, 4, 5, 7, 20, 16].39

This is because the algorithm’s analysis, which can be divided into a probabilistic and a40

combinatorial part, is considered to be “extremely difficult” [19] by the algorithms community,41

despite the algorithm itself being very simple.42

In this paper we formalise an analysis of the algorithm by Birnbaum and Mathieu [4]43

(henceforth, BM) in Isabelle/HOL [17]. BM claim to present the first simple proof of the44

© Mohammad Abdulaziz and Christopher Madlener;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mansour@in.tum.de
https://orcid.org/0000-0002-8244-518X
mailto:madlener@in.tum.de
https://orcid.org/0000-0002-9577-0061
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Formal Analysis of RANKING

algorithm’s competitive ratio. Indeed, the paper’s title is “Online bipartite matching made45

simple”, and it is the last attempt at a simple combinatorial proof for the algorithm, as later46

works focused on primal-dual analyses of the algorithm.47

Our most striking finding is that there is a “gap” in the proof, where there was one lemma48

whose proof was “a simple structural observation” by the authors. Formalising the proof of49

this lemma constitutes the majority of the effort that went into the work we describe here as50

well as the majority of the volume of the formal proof scripts. There are also other interesting51

aspects, from a formalisation perspective, of that proof. For instance, it combines graph52

theoretic, probabilistic, and graphical arguments. It also requires modelling and reasoning53

about online algorithms.54

The rest of the paper is structured as follows. We first describe the algorithm and how55

we model it in Isabelle/HOL. Then we discuss the the probabilistic part of the proof and its56

formalisation. We then discuss the combinatorial part of the proof, where we describe the57

main findings of this work, namely, 1. the first complete proof that covers the gap in the58

proof by BM, as well as other combinatorial proofs of the algorithm, and 2. a significantly59

simpler proof of a lemma needed by BM to facilitate the algorithm’s probabilistic analysis.60

Lastly, we discuss a part of the proof usually glossed over by other authors, which is lifting61

the analysis to obtain an asymptotic statement on the competitive ratio.62

Isabelle/HOL Isabelle/HOL [18] is a theorem prover based on Higher-Order Logic. Roughly63

speaking, Higher-Order Logic can be seen as a combination of functional programming with64

logic. Isabelle’s syntax is a variation of Standard ML combined with (almost) standard65

mathematical notation. Function application is written infix, and functions are usually66

curried (i.e., function f applied to arguments x1 . . . xn is written as f x1 . . . xn instead of67

the standard notation f(x1, . . . , xn)). In Isabelle/HOL, SOME is the Hilbert choice, and68

THE is the definite description operator.69

Availability Our formalisation is in the supplementary material and will be available online70

in case of acceptance. Throughout the paper, and in the appendix, we added excerpts from71

the formalisation representing important definitions and theorem statements to aid in linking72

the informal description in the paper and the formal proof scripts.73

2 Basic Definitions and Notation74

We denote a list of elements as [x1, x2, . . . , xn]. In the rest of this paper, we only consider75

lists with distinct elements. We say element xi has rank i1 in the list [x1, x2, . . . , xi, . . . , xn].76

We overload the membership, subset, union and intersection set operations to lists. For a list77

vs, of length n, and an element v ∈ vs, let, for 1 ≤ i ≤ n, vs[v 7→ i] denote the list with the78

same elements as vs, where v has rank i, the elements of rank less than i remain unchanged79

and the rank of the elements of rank at least i is increased by 1. Also, let vs(v) denote the80

rank of v in vs and vs[i] the element of rank i in vs. For a list vs, v#vs denotes the list vs81

but with the vertex v appended to its head. A permutation of a finite set s is a list whose82

elements are exactly the elements of s.83

An edge is a set of vertices with size 2. A graph G is a set of edges. The set of vertices84

of a graph G, denoted by V(G), is
⋃

e∈G e. For a vertex v, NG(v) denotes {u | {v, u} ∈ G}.85

We say a graph G is bipartite w.r.t. to two sets of vertices V and U (henceforth, the left86

and right party) iff 1. V(G) ⊆ (V ∪ U), 2. for any {v, u} ∈ G, we have that {v, u} ̸⊆ V and87

{v, u} ̸⊆ U . A set of edges M is a matching iff ∀e ̸= e′ ∈M. e ∩ e′ = ∅. For a matching M88

1 In the formalisation we use index, which is the same as the rank less one.

M. Abdulaziz and C. Madlener 23:3

and a vertex v, if there is u s.t. {v, u} ∈ M, we say u is the partner of v, denoted by M(v).89

We use G − E to denote the edges in G that are not in E, and, for a set of vertices V , G \ V90

denotes G ∩ {e | e ∩ V = ∅}, i.e. the graph with edges incident to vertices in V removed.91

In many cases, a matching is a subset of a graph, in which case we call it a matching92

w.r.t. the graph. For a graph G, a matching M w.r.t G is a maximum cardinality matching,93

aka maximum matching, w.r.t. G iff for any matchingM′ w.r.t. G, we have that |M′| ≤ |M|.94

A matching M w.r.t. G is a perfect matching w.r.t. G iff V(M) = V(G). A matching M95

w.r.t. G is a maximal matching w.r.t. G iff ∀e ∈ G. e ∩ V(M) ̸= ∅.96

A discrete probability space P is defined by a countable sample space ΩP and a probability97

mass function (PMF) PP : ΩP → [0, 1] assigning a probability to each sample, where98 ∑
ω∈ΩP

PP (ω) = 1. The PMF is lifted naturally to events (sets of samples) as PP (E) =99 ∑
ω∈E PP (E) for E ⊆ ΩP . The expectation of a random variable X : ΩP → R is denoted100

Eω∼P [X(ω)]. For a set B and a non-empty, finite subset A ⊆ B, UB(A) is the discrete101

uniform distribution, i.e. ΩUB(A) = B and PUB(A)(a) = 1
|A| if a ∈ A and PU(A)(b) = 0 if102

b /∈ A. If A = B we simply write U(A) for UA(A).103

We model randomised algorithms as probability distributions over the results of the104

algorithm. The Giry Monad [9] allows to compose random experiments in an elegant manner105

and is used to express randomised algorithms. The return operator gives a distribution which106

places probability 1 on a single sample ω, i.e. Preturn(ω)(x) is 1, if x = ω, and 0, otherwise.107

Composition of experiments is achieved via the bind operator (written infix as >>=).108

Intuitively, P >>= Q randomly chooses a sample ω according to P and then returns a value109

chosen randomly according to the distribution Q(ω). For additional legibility, we use110

Haskell-like do-notation for bind and return. This notation can be desugared recursively as111

follows:112

do{ x← P ; stmts } ≡ P >>= (λx. stmts).113
114

In Isabelle/HOL, we base our work on a simple formalisation of undirected graphs by115

Abdulaziz et al. [2], which was introduced in the context of the verification of Edmonds’116

blossom matching algorithm. The types of graphs and edges as well as the notion a matching117

in this formalisation are shown in Listing 7. We use this formalisation because of its simplicity,118

and the fact that it has a rich library on matchings and other related notions, as we will119

discuss later. However, we will not further discuss the merits of this representation as it is120

outside of the scope of this work. Interested readers should consult the original paper [2].121

Probability theory in Isabelle/HOL is based on a general formalisation of measure theory122

by Hölzl [11]. In the formalisation, U(A) is denoted pmf_of_set A, and return is denoted123

return_pmf. The meanings of other Isabelle/HOL notations used in the rest of the paper124

should be self-explanatory.125

3 RANKING126

Given a bipartite graph G, whose left and right parties are V and U , the ranking algorithm127

takes as an offline input V , and a sequence π as an online input, where vertices, along with128

their adjacent edges, arrive one-by-one. As an example, consider Fig. 1a, showing a graph129

whose left party, i.e. the offline vertices, is {v4, v2, v6, v1, v5, v3}. The right party, i.e. the130

online vertices, arrive in the order [u1, u2, u3, u4, u5]. The first step in the algorithm is that it131

randomly permutes the offline input. In our example, this is shown in Fig. 1b. Then, vertices132

from the right party of the graph arrive one-by-one. The most important thing to note about133

that is that, for every arriving vertex u, the algorithm adds the edge connecting u and the134

CVIT 2016

23:4 A Formal Analysis of RANKING

v1v4

v2

v6

v1

v5

v3

(a)

v1v1

v2

v3

v4

v5

v6

(b)

v1v1

v2

v3

v4

v5

v6

u1

(c)

v1v1

v2

v3

v4

v5

v6

u1

u2

(d)

v1v1

v2

v3

v4

v5

v6

u1v1v1

v2

v3

v4

v5

v6

u1

u2

u3

(e)

v1v1

v2

v3

v4

v5

v6

u1v1v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

(f)
v1v1

v2

v3

v4

v5

v6

u1v1v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

u5

(g)

v1v1

v2

v3

v4

v5

v6

u1v1v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

u5

u6

(h)

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

(i)

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

zig(u2)

zag(v2)

zig(u3)

zag(v4)

zig(u5)

zag(v5)

(j)

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

zig(v2)

zag(u3)

zig(v4)

zag(u5)

zig(v5)

(k)

Figure 1 The steps of computing a matching using online-match, and what happens when an
online vertex is removed from the input.

offline unmatched vertex with the minimum rank, if any such edge exists. In our example,135

we have the ranking [v1, v2, v3, v4, v5, v6], of the offline vertices. Fig. 1c shows the state of136

the matching after the arrival of u1: it has three edges connecting it to the offline vertices v1,137

v3, and v5. The edge connecting it to v1 is added to the matching, as it is unmatched and138

has the lowest rank among them. Then, the other vertices on the online side arrive based on139

the order given earlier, and the matching is updated, as shown in Fig. 1d-1g, and the final140

matching computed by the algorithm is the one represented by the green edges in Fig. 1h.141

As should be clear by now, the algorithm’s description and, accordingly, modeling is a142

simple task. The pseudo-code is in Algorithm 1. In Isabelle/HOL, we model the algorithm143

as shown in Listing 1. The first two functions are recursive on lists. The first function, step,144

is recursive on the list of the offline vertices, where, given a graph G, a vertex u from the145

online side, the list of offline vertices, and the matching, it adds to the matching the first146

edge it finds that connects u and an offline vertex v. The function does the recursion on the147

list, assuming the list is ordered according to the ranking of the offline vertices, with the148

head of the list being the vertex with the lowest rank. The second function, online_match’,149

is recursive on the on the list of online vertices, where the list is ordered according to the150

arrival order of those vertices, where the head of the list is the earliest arriving vertex. For151

each vertex in the list, online_match’ tries to match it to an offline vertex using step. The152

M. Abdulaziz and C. Madlener 23:5

Algorithm 1 Pseudo-code of RANKING

function online-match(G, π, σ) begin
M← ∅
for every arriving vertex u in π do

if ∃v ∈ (NG(u)− V(M)) then M←M∪ {{argminv∈(NG(u)−V(M))σ(v), u}}
return M

end
function RANKING(G, π) begin

σ ← a random permutation of V

return online-match(G, π, σ)
end

Listing 1: Modelling RANKING in Isabelle/HOL.
fun s t e p :: " ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a graph ⇒ ' a graph " where

2 " s t e p − − [] M = M"
| " s t e p G u (v#vs) M = (

4 i f v /∈ Vs M ∧ u /∈ Vs M ∧ {u , v} ∈ G
then i n s e r t {u , v} M

6 e l s e s t e p G u vs M
) "

8

fun o n l i n e−match ' :: " ' a graph ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a graph ⇒ ' a graph " where
10 " o n l i n e−match ' − [] − M = M"

| " o n l i n e−match ' G (u#us) σ M = o n l i n e−match ' G us σ (s t e p G u σ M) "
12

abbreviation " o n l i n e−match G π σ ≡ o n l i n e−match ' G π σ {} "
14

definition " r a n k i n g ≡
16 do {

σ ← pmf−o f−s e t (p e r m u t a t i o n s−o f−s e t V) ;
18 r e t u r n−pmf (o n l i n e−match G π σ)

}"

other main function, ranking, chooses a permutation of the offline vertices and passes it to153

online-match.154

We note that we avoid devising an involved way to model and reason about online155

computation, and only model it simply as a list of inputs and a step function that operates156

on each online input. This is because the algorithm description itself is simple. The primary157

focus of our work here is the formalisation of the correctness argument, the mathematical158

part of which is the main challenge.159

3.1 Competitive Ratio of RANKING160

The goal of this work is formalise the analysis of RANKING’s competitiveness. In general,161

for online algorithms solving optimisation problems, the analysis focuses on the quality of162

their outputs in comparison with the quality of the output of the best offline algorithm,163

i.e. an algorithm which has access to the entire input before it starts computing its output.164

The outcome of such an analysis is referred to as the competitive ratio of the respective165

online algorithm. In the case of bipartite matchings, the best offline algorithms, like the166

Hopcroft-Karp algorithm [12], can compute maximum cardinality matching for bipartite167

graphs. Thus, for RANKING, the natural way to analyse it is by showing that the size of168

the matching it computes maintains a certain ratio if compared to the size of the maximum169

matching of the input graph. Furthermore, since RANKING is a randomised algorithm, it is170

natural that this relationship is in expectation. More precisely, for RANKING, we have the171

CVIT 2016

23:6 A Formal Analysis of RANKING

following relation, which was first shown by KVV: for any given graph and arrival orders,172

the ratio between the expected size of the matching computed by RANKING and the size of173

the maximum matching is 1− 1/e. The expectation ranges over the different permutations174

of the offline side.175

4 Competitiveness for Bi-Partite Graphs with Perfect Matchings176

In the following, let G be a bipartite graph w.r.t. V and U , s.t. M is a perfect matching177

w.r.t. G, and |M| = n. Let π be an arrival order for U and let S(A) denote the set of all178

permutations of a finite set A.2179

The algorithm can be modelled as the following Giry monad180

RANKING(G, π) ≡ do { σ ← U(S(V)); return online-match(G, π, σ) }.181

In the following, we describe our formal proof of the analysis of the competitive ratio for182

instances with perfect matching. This formal proof closely follows the one by BM. However,183

we highlight the differences to the original one as they arise.184

We need the following lemma ([4, Lemma 5]) before the main result can be shown.185

▶ Lemma 1. Let xt denote the probability over the random permutations of V that the vertex186

of rank t is matched by the algorithm, for 1 ≤ t ≤ n. Then 1− xt ≤ (1/n)
∑

1≤s≤t xs.187

Let v ∈ V be the vertex of rank t for some fixed permutation σ of V . The intuition behind188

this bound is that v only remains unmatched if its partner M(v) in the perfect matching189

is matched to a vertex ranked lower in π. Since v is a random vertex (when drawing190

a permutation), so is M(v). The right-hand-side is supposed to be the probability that191

M(v) is matched to a vertex arriving before v (since the sum is the expected number of192

vertices matched to vertices of rank at most t). This intuitive idea does not work due to193

the dependence of M(v) and the set of vertices matched to vertices of rank at most t. The194

correct argument avoids this dependence. However, this requires a stronger statement on195

what happens withM(v) if v stays unmatched, captured in the following lemma ([4, Lemma196

4]), whose proof we discuss in the next section.197

▶ Lemma 2. Let v ∈ V , u denote M(v), and σ ∈ S(V). If v is not matched by198

online-match(G, σ, π) to u, then, for all 1 ≤ i ≤ n, u is matched by online-match(G, σ[v 7→199

i], π) to a vi ∈ V s.t. σ[v 7→ i](vi) ≤ σ(v).200

Before presenting the proof of Lemma 1, we need to consider how to formally define xt.201

It cannot be stated as a probability in the distribution RANKING(G, π). There is no way to202

refer to the “vertex of rank t in the permutation σ” since RANKING(G, π) is a distribution203

over subgraphs of G and the random permutations used to obtain them are not accessible.204

The solution is to explicitly define the Bernoulli distribution capturing the notion of the205

vertex of rank t being matched.206

It ≡ do { σ ← U(S(V)); let R = online-match(G, π, σ); return (σ[t] ∈ V(R)) }207

Then, 1− xt corresponds to the probability PIt(False).208

A key step to achieve the independence of the involved events revolves around not only209

drawing a random permutation, but also drawing a random vertex and moving it to rank210

2 In the formalisation S(A) is written permutations_of_set A.

M. Abdulaziz and C. Madlener 23:7

I′t ≡ do {
σ ← U(S(V));
v ← U(V);
let R = online-match(G, π, σ[v 7→ t]);
return (v ∈ V(R))
}

(a) In addition to a random permutation σ ∈
S(V), a random vertex v ∈ V is drawn and
moved to rank t.

I′′t ≡ do {
σ ← U(S(V));
v ← U(V);
let R = online-match(G, π, σ);
return (M(v) ∈ V(R) ∧ σ(R(M(v)) ≤ t))
}

(b) Distribution describing the probability that
the partner M(v) ∈ U of a random vertex v ∈ V
is matched to a vertex of rank at most t.

Figure 2 Two Bernoulli distributions used in the proof of Lemma 1

t. This is reflected in the distribution I′t, given in Fig. 2a. This deceptively simple change211

ensures the independence of the drawn permutation, i.e. σ, and the actual partner in the212

perfect matching of the vertex of rank t, i.e. M(σ[v 7→ t][t]) which is the same as M(v).213

There is an aspect that is glossed over in the original proof and is intuitively clear: simply214

drawing a random permutation uniformly at random and the modified way where a random215

vertex is put at rank t are equivalent. This is shown explicitly in the formal proof.216

The final distribution we present here, I′′t in Fig. 2b, captures the probability that the217

partner M(v) of a random v ∈ V is matched to a vertex of rank at most t.3218

Proof of Lemma 1. The first step follows from the fact that the permutation σ, in both It219

and I′t, and the vertex v are all drawn from uniform distributions.220

PIt
(False) = PI′

t
(False)221

222

By Lemma 2, if v ∈ V is unmatched in online-match(G, π, σ[v 7→ t]), then, M(v) is matched
to a vertex of rank at most t in online-match(G, π, σ) (by using σ[v 7→ t][v 7→ σ(v)] = σ).223

≤ PI′′
t
(True)224

225

Then, the process of drawing a random v ∈ V and considering M(v) in I′′t can be replaced
with drawing a random u ∈ U directly, using the bijection induced byM. This describes the
probability that a random u ∈ U is matched to a vertex of rank at most t. That probability,
in turn, is exactly the expected size of the set of online vertices matched to vertices of
rank at most t. Formally, these two steps are performed by defining two more Bernoulli
distributions capturing the involved concepts. Their definitions are omitted here. Let I∗t be
the distribution for the set of online vertices matched to vertices of rank at most t.226

= 1
n
EO∼I∗

t
[|O|]227

228

The final step is to express the expected size of the set of online vertices matched to vertices
of rank at most t as a sum of the probabilities that the offline vertices of rank up to t are
matched. This completes the argument.229

= 1
n

t∑
s=1

PIs
(True)230

231

3 The formalisations of the different distributions are in Listing 8.

CVIT 2016

23:8 A Formal Analysis of RANKING

◀232

Then, we proceed to the main result of this section.233

▶ Theorem 1. The competitive ratio of RANKING for instances with a perfect matching of234

size n is at least 1− (1− 1
n+1)n, i.e. 1− (1− 1

n+1)n ≤ ER∼RANKING(G,π)[|R|]
n .235

Proof. The expected size of the matching produced by RANKING(G, π) can be rewritten as236

a sum of the probabilities of the vertices of some rank getting matched.237

ER∼RANKING(G,π) [|R|]
n

= 1
n

n∑
s=1

PIs(True)238

239

The bound obtained on PIs
(False) for 1 ≤ s ≤ n in Lemma 1 can be used to bound the sum.

This requires a fact on sums provable by induction on n, followed by algebraic manipulation.240

≥ 1
n

n∑
s=1

(
1− 1

n + 1

)s

241

242

More algebraic manipulation yields the final result.243

= 1−
(

1− 1
n + 1

)n

244

245

◀246

5 Lifting the Competitiveness to General Bi-Partite Graphs247

Until now, we have shown that RANKING satisfies the desired competitive ratio for graphs248

with a perfect matching. Also, until now, our formalisation closely follows BM’s proof.249

However, in all previous graph-theoretic expositions of the correctness proof of this al-250

gorithm [10, 4, 14], as opposed to linear programming-based expositions [5, 7, 20], the251

authors would stop at the current point, stating, or implicitly assuming, that it is obvious252

to see how the analysis of RANKING for bipartite graphs with perfect matchings extends253

to general bipartite graphs. The central argument is as follows: it is easy to see that, for a254

fixed permutation of the offline vertices, if we remove a vertex from a bipartite graph that255

does not occur in a maximum matching of that graph, then online-match will compute a256

matching that is either one edge smaller or of the same size as the matching online-match257

would compute, given the original graph.258

Indeed, BM, who are the authors who give the most detailed account of the graph-theoretic259

correctness proof of this algorithm, state, as a proof for this fact [4, Lemma 2], that “it is260

an easy structural observation”. In a sense they are correct: in our example, illustrated in261

Fig. 1, if we remove u2, it is easy to see that online-match’s output size will be only one262

less than on the original graph. This is because all the matching edges will “cascade” down.263

This is illustrated in Fig. 1i, showing the blue edges being replaced with the red edges. In264

this section we mainly formalise this argument. We also formalise another easier, but no265

less crucial, graph-theoretic part of the proof by BM [4, Lemma 4]. This lemma is used in266

the probabilistic part of the proof, as stated earlier. In our formalisation we significantly267

simplified the proof. Before we do so, however, we introduce some necessary background and268

notions related to paths.269

M. Abdulaziz and C. Madlener 23:9

5.1 Alternating Paths, Augmenting Paths, and Berge’s Lemma270

A list of vertices [v1, v2, . . . , vn] is a path w.r.t. a graph G iff {vi, vi+1} ∈ G for 1 ≤ i < n.271

Note: a path [v1v2 . . . vn] is always a simple path as we only consider distinct lists. A list of272

vertices [v1, v2, . . . , vn] is an alternating path w.r.t. a set of edges E iff for some E′ 1. E′ = E273

or E′ ∩ E = ∅, 2. {vi, vi+1} ∈ E′ holds for all even numbers i, where 1 ≤ i < n, and274

3. {vi, vi+1} ̸∈ E′ holds for all odd numbers i, where 1 ≤ i ≤ n. We call a list of vertices275

[v1, v2, . . . , vn] an augmenting path w.r.t. a matching M iff [v1, v2, . . . , vn] is an alternating276

path w.r.t. M and v1, vn ̸∈ V(M). If M is a matching w.r.t. a graph G, we call the path277

an augmenting path w.r.t. to the pair ⟨G,M⟩. Also, for two sets s and t, s⊕ t denotes the278

symmetric difference of the two sets.279

A central result in matching theory is Berge’s lemma, which gives an algorithmically280

useful characterisation of a maximum cardiniality matching.281

▶ Theorem 2 (Berge’s Lemma). For a graph G, a matching M is maximum w.r.t. G iff there282

is not an augmenting path γ w.r.t. ⟨G,M⟩.283

We use a formalisation of the above concepts and Berge’s Lemma by Abdulaziz et284

al. [2]. For completeness, the most important parts of this formalisation are demonstrated in285

Listing 9. Nonetheless, interested readers should refer to the original paper [2].286

5.2 online-match’s Behaviour after Removing a Vertex287

Now that we have all the necessary machinery, we can discuss the formalisation of the288

correctness of RANKING for general bipartite graphs. The central claim to show is stated289

in the following lemma, which is a restatement of Lemma 2 in BM’s paper. It states what290

happens to the result of online-match when a vertex is removed from the graph.291

▶ Lemma 3. Let G be a bipartite graph w.r.t. the lists σ and π. Consider a vertex u ∈ π.292

Let H be G \ {u}. We have that either online-match(G, π, σ) = online-match(H, π, σ) or293

online-match(G, π, σ)⊕ online-match(H, π, σ) can be ordered into an alternating path w.r.t.294

online-match(G, π, σ) and w.r.t. online-match(H, π, σ), and that path starts at v.295

The above lemma was never proved by any of the previous expositions of the combinatorial296

argument for the algorithm’s correctness. BM’s exposition is an exception, where there is at297

least a graphical example, showing what happens when we remove a vertex before running298

online-match. A version of that graphical argument can be seen in Fig. 1.Fig. 1h shows the299

matching computed by the algorithm on the original graph, and Fig. 1i shows the difference300

in the computed matching if a vertex from the online side of the graph is removed. 4 As301

shown, when the vertex is removed, the matched edges “cascade downwards”, where the302

original matching edges, shown in blue, are replaced with the red edges. The statement of the303

lemma states that the symmetric difference between the two computed matchings is always304

an alternating path, w.r.t. both the old and the new matchings, if there is any difference.305

When looking at the graphical illustration this is obvious. However, when formalising that306

argument, many challenges manifest themselves.307

The first challenge is the characterisation of the path that constitutes the difference308

between the two matchings. This characterisation has to, among other things, make formal309

4 The the lemma above is stated for an online vertex being removed, while in the formalisation an offline
vertex is removed. This highlights an important concept in many of the proofs: the interchangeability
of the offline and online vertices for fixed orders σ and π.

CVIT 2016

23:10 A Formal Analysis of RANKING

Listing 2: Formalising shifts-to in Isabelle/HOL
definition " s h i f t s−to G M u v v ' π σ ≡

2 u ∈ s e t π ∧ v ' ∈ s e t σ ∧ i n d e x σ v < i n d e x σ v ' ∧ {u , v ' } ∈ G
∧ (∄u ' . i n d e x π u ' < i n d e x π u ∧ {u ' , v ' } ∈ M) ∧

4 (∀v ' ' . (i n d e x σ v < i n d e x σ v ' ' ∧ i n d e x σ v ' ' < i n d e x σ v ')
−→ ({u , v ' ' } /∈ G ∨ (∃u ' . i n d e x π u ' < i n d e x π u ∧ {u ' , v ' ' } ∈ M)))

Listing 3: Formalising zig-zag and their termination relation in Isabelle/HOL.
function z i g :: " ' a graph ⇒ ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a l i s t "

2 and zag :: " ' a graph ⇒ ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a l i s t " where
p r o p e r−z i g : " z i g G M v π σ = v # (

4 i f ∃u . {u , v} ∈ M
then zag G M (THE u . {u , v} ∈ M) π σ

6 e l s e []) " i f " matching M"
| no−matching−z i g : " z i g − M v − − = [v] " i f "¬matching M"

8

| p r o p e r−zag : " zag G M u π σ = u # (i f ∃v . {u , v} ∈ M
10 then

(l e t v = THE v . {u , v} ∈ M i n (
12 i f ∃v ' . s h i f t s−to G M u v v ' π σ

then z i g G M (THE v ' . s h i f t s−to G M u v v ' π σ) π σ
14 e l s e [])

)
16 e l s e []

) " i f " matching M"
18 | no−matching−zag : " zag − M v − − = [v] " i f "¬matching M"

proofs by induction manageable. To do so, we had to formulate this characterisation not310

recursively on the given bipartite graph, i.e. the given bipartite graph should not change311

across different recursive calls. Otherwise, proving anything about the path would involve a312

complicated induction on the given bipartite graph.313

To define that path, we first introduce a concept relating two vertices on the online side.314

We state v shifts-to v′ iff 1. v occurs before v′ in the offline permutation σ, 2. v is matched315

to some u, 3. v′ is not matched to any vertex that occurs before u in π, and 4. any vertex316

v′′ ∈ NG(u) occurring between v and v′ in σ is matched by online-match to a vertex occurring317

before u in the arrival order π. Intuitively, this means that, if v is removed from the graph,318

then v′ would be matched to u by online-match. Our formalisation of this definition can319

found in Listing 2. Note: the omitted arguments in the text, G, M, π, and σ are usually320

clear from the context.321

Now that we are done with the definition of shifts-to, we are ready to describe our322

characterisation of the path whose edges form the symmetric difference of the two matchings323

computed by online-match. We characterise it using the following functions:324

zig(G,M, v, π, σ) ≡
{

v#zag(G,M, u, π, σ) if {v, u} ∈ M
[v] otherwise

325

zag(G,M, u, π, σ) ≡
{

u#zag(G,M, v′, π, σ) if {v, u} ∈ M, for some v, and v shifts-to v′

[u] otherwise
326

327

As the names of the functions indicate, the path zig-zags between the online and the328

offline sides of the graph, going down the online ordering. This is indicated in Fig. 1j. The329

formalisation of zig-zag is given in Listing 3. Note that the formalisation has extra cases330

for when the second argument is not a matching: this is to ensure termination, which is331

not straightforward, as the definite descriptions are not well-defined in these cases. The332

M. Abdulaziz and C. Madlener 23:11

Listing 4: Formalising the specification of online-match’s output in Isabelle/HOL.
definition r a n k i n g−matching :: " ' a graph ⇒ ' a graph ⇒ ' a l i s t ⇒ ' a l i s t ⇒ boo l " where

2 " r a n k i n g−matching G M π σ ≡ graph−matching G M ∧
b i p a r t i t e G (s e t π) (s e t σ) ∧ maximal−matching G M ∧

4 (∀u v v ' . ({u , v}∈M ∧ {u , v ' }∈G ∧ i n d e x σ v ' < i n d e x σ v) −→
(∃u ' . {u ' , v ' }∈M ∧ i n d e x π u ' < i n d e x π u)) ∧

6 (∀u v u ' . ({u , v}∈M ∧ {u ' , v}∈G ∧ i n d e x π u ' < i n d e x π u) −→
(∃v ' . {u ' , v ' }∈M ∧ i n d e x σ v ' < i n d e x σ v)) "

termination relation encodes the intuition that, while zig-zagging, the path also goes down the333

ordering of online vertices. More formally, because this is a mutually recursive function, we334

have to provide an order that relates the argument passed to recursive calls of zag from zig and335

the other way around. For evaluating zig(G,M, v, π, σ), we need a call to zag(G,M, u, π, σ),336

in which case the relation holds iff v and u satisfy 1. {v, u} ∈ online-match(G, π, σ) and 2. if337

there is v′, s.t. v shifts-to v′, then σ(v) < σ(v′). For evaluating zag(G,M, u, π, σ), we need a338

call to zig(G,M, v′, π, σ), in which case the relation holds iff u and v′ satisfy 1. there is v s.t.339

{v, u} ∈ online-match(G, π, σ) and 2. v shifts-to v′ and σ(v) < σ(v′).340

Another challenge for formalising the proof of Lemma 3 is devising a non-recursive341

characterisation of the properties of the matching computed by online-match, which would342

be enough for proving the lemma, yet more abstract than the actual specification of the343

algorithm. This characterisation can be intuitively described as follows: M is a ranking-344

matching w.r.t. G, σ, and π iff 1. G is bipartite w.r.t. σ and π, 2. M is a maximal matching345

w.r.t. G, 3. every vertex from u ∈ π is matched to the unmatched vertex from σ at u’s arrival,346

to which it is connected, with the lowest rank in σ, and 4. no vertex from σ “refuses” to be347

matched. The formal specification is given in Listing 4. It should be clear that the following348

properties hold for ranking-matching.349

▶ Proposition 1. Let G be a bipartite graph w.r.t. σ and π. We have that 1. online-match(G, π, σ)350

is a ranking-matching w.r.t. G, σ, and π, 2. if M is a ranking-matching w.r.t. G, σ, and351

π, then it is a ranking-matching w.r.t. G, π, and σ, and 3. if M and M′ are both rank-352

ing-matchings w.r.t. G, σ, and π, then M =M′.353

This specification of online-match makes our proofs about online-match much simpler, as354

it allows us to gloss over many of the computational details of the algorithm. In particulate,355

it allows us to avoid nested inductions, especially when using the I.H. of Lemma 3.356

Now that we have characterised the difference between the matchings computed by357

online-match before and after removing a vertex, as well as the main properties satisfied by358

matchings computed by online-match, we are ready to present the proof that the competit-359

iveness for bipartite graphs with perfect matchings lifts to general bipartite graphs. There360

are two main ideas to our proof. The first one is that we show that the output of zig, for361

some online vertex u, which is matched to an offline vertex v, stays the same when offline362

vertices are removed from the graph and the matching, if those offline vertices are all ranked363

lower than v. Graphically, this is clear. For instance, in Fig. 1j, if we remove the vertex364

v1 from the graph and the matching, the result of zig applied to u2, w.r.t. to the modified365

graph and matching, will be the same as its output w.r.t. the old graph and matching.366

▶ Lemma 4. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π, s.t.367

there is v, where {v, u} ∈ M. Consider a set of vertices U ′ ⊆ π, s.t. for all u′ ∈ U ′368

we have that π(u′) < π(u). Let M be a ranking-matching w.r.t. G, π, and σ. We have369

that zig(G,M, u, σ, π) = zig(G \ U ′,M\ U ′, u, σ, π) and zag(G,M, v, σ, π) = zag(G \ U ′,M\370

U ′, v, π, σ).371

CVIT 2016

23:12 A Formal Analysis of RANKING

We do not prove this lemma here: the proof depends on an involved case analysis of the372

behaviour of shifts-to, and we describe below similar case analyses, which convey the difficulty373

of translating such obvious graphical arguments into proofs. Interested readers, however,374

should refer to the accompanying formal proof.375

The second idea is that we exploit the symmetry between the online and the offline376

vertices. This is encoded in the following relationship between zig and zag.377

▶ Lemma 5. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π. Let H be378

G \ {u}. Let M be a ranking-matching w.r.t. G, π, and σ, and M′ be a ranking-matching379

w.r.t. H, σ, and π. Let v be a vertex s.t. {v, u} ∈ M. We have that zig(H,M′, v, π, σ) =380

zag(G,M, v, σ, π).381

Before we discuss the proof, we first show a graphical argument of why the lemma holds.382

Fig. 1j and 1k show an example of how zig and zag would return the same list of vertices383

if invoked on the same vertex once on the offline side, and another time on the online384

side. In the first configuration, zag(G,M, v2, σ, π) chooses u3, because in M, we have that385

v2 is matched to u2, and u2 shifts-to u3. Then the rest of the recursive calls proceed as386

shown in the figure. When the online and offline sides are flipped, as shown in Fig. 1k,387

zig(H,M′, v2, π, σ), where H denotes G \ {u2}, will also choose u3 because, this time, it will388

be matched to v2 in M′, which is a ranking-matching for H. As we will see in the proof,389

this graphical argument is much shorter than the corresponding textual proof, let alone the390

formal proof.391

Proof. Our proof is by strong induction on the index of v. Let all the variable names in392

the I.H. be barred, e.g. the graph is G. Our proof is done by case analysis. We consider 3393

cases: 1. we have vertices u′, v′, s.t. {v, u′} ∈ M′ and {u′, v′} ∈ M, 2. we have a vertex394

u′, s.t. {v, u′} ∈ M′ and there is no v′ s.t. {u′, v′} ∈ M, and 3. there is no vertex u′, s.t.395

{v, u′} ∈ M′.396

We focus on the first case, as that is the one where we employ the I.H. To apply the397

I.H., we use the following assignments of the quantified variables. G 7→ G \ {u, v}, π 7→ π,398

σ 7→ σ, u 7→ u′, v 7→ v′, M 7→ M \ {u, v}, and M′ 7→ M′ \ {v, u′}. From the I.H., we get399

zig(H,M′, v, π, σ) = zag(G,M, u, σ, π). This proof is then finished by Lemma 4. ◀400

We are now ready to prove a lemma that immediately implies Lemma 3.401

▶ Lemma 6. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π. Let H be402

G \ {u}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching403

w.r.t. H, σ, and π. We have that M⊕M′ = zig(G,M, u, σ, π)5 or M =M′.404

Proof. Our proof is by strong induction on |G|. Again, let all the variable names in the I.H.405

be barred. We consider two cases, either u /∈ V(M) or u ∈ V(M). In the former case, the406

lemma follows immediately, since online-match will compute the same matching.407

For the second case, we instantiate the I.H. as follows: G 7→ G \ {u}, M 7→ M′,408

M′ 7→ M\ {v, u}, π 7→ σ, σ 7→ π, and u 7→ v, where v is some vertex s.t. {v, u} ∈ M, which409

must exist since u ∈ V(M).6 To show that the I.H. is usable in this case, we need to show410

that: 1. M is a ranking-matching w.r.t. G, π, and σ, and 2. M′ is a ranking-matching w.r.t.411

H, π, and σ. The first requirement follows from the assumption thatM′ is ranking-matching412

5 We abuse the notation: although zig(G, M, u, σ, π) is the list of vertices in the path, we use it here to
denote the edges in the path.

6 The instantiation of H follows implicitly from the other instantiations.

M. Abdulaziz and C. Madlener 23:13

w.r.t. H, σ, and π, and the fact that ranking-matching is commutative w.r.t. the left and413

right parties of the given graph. The second requirement follows from a property of ranking-414

matching, which we do not prove here, stating that for any M that is a ranking-matching415

w.r.t. G, σ, and π, and for any e ∈M, M−{e} is a ranking-matching w.r.t. G \ e, σ, and π.416

Then, from the I.H. and since we know that v ∈ V(M), we have that either 1. M =M′417

or 2. M⊕M′ = zig(G,M, u, σ, π). In the former case, we have that M′ =M\ {u, v}, so v418

was not matched to anything in the graph, after removing u. This means that there is no u′419

for v s.t. u shifts-to u′, which means that zig(G,M, u, σ, π) = [u, v]. From that, we have the420

lemma proved for this case, since M⊕M′ = {v, u}.421

In the second case, we have that M⊕M′ = zig(G \ {u},M′, v, π, σ). From Lemma 5,422

we have zig(G \ {v},M′, v, π, σ) = zag(G,M, v, σ, π). From the definition of zig and since423

{u, v} ∈ M, the lemma follows for this case. ◀424

Proof of Lemma 3. Lemma 3 follows immediately from Lemma 6 lemma and from Proposi-425

tion 1. ◀426

5.3 Finishing the Proof427

The next step in our proof is to generalise the previous analysis to address the case when the428

removed vertex is from the offline side of the graph. Although this is not considered by any429

of the previous expositions, this generalisation is crucial for proving the competitive ratio for430

general bipartite graphs, i.e. graphs that do not have a perfect matching.431

▶ Lemma 7. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex v ∈ σ. Let H be432

G \ {v}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching433

w.r.t. H, σ, and π. We have that M⊕M′ = zig(G,M, v, π, σ) or M =M′.434

The proof of this lemma is very similar to that of Lemma 3. However, we are able to reuse435

all our lemmas that exploit the symmetry of the offline and online sides of the graphs, so436

there is not much redundancy in our proofs.437

Until now, we have primarily focused on the structural difference between matchings438

computed by online-match before and after removing a vertex from the original graph. The439

next step in the proof is to use that to reason about the competitiveness of online-match for440

general bipartite graphs. The first step is proving the following lemma.441

▶ Lemma 8. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex x. Let H be442

G \ {x}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching443

w.r.t. H, σ, and π. We have that |M′| ≤ |M|.444

Proof. Our proof is by case analysis. The first case is when x /∈ V(M). In this case we will445

have that M =M′, which finishes our proof.446

The second case is when x ∈ V(M). In this case, we have two sub-cases: either x ∈ π447

or x ∈ σ. We only describe the first case here and the second is symmetric. Our proof448

is by contradiction, i.e. assuming |M′| > |M|. From Lemma 6, we have that M⊕M′ =449

zig(G,M, u, σ, π). Also note that, from Berge’s lemma, we will have that a subsequence of450

zig(G,M, u, σ, π) is an augmenting path w.r.t. ⟨G,M⟩. We know from the definition of an451

augmenting path that, both, its first and last vertices are not in the matching it augments.452

Accordingly, we have that the first and last vertices of that subsequence of zig(G,M, u, σ, π)453

are not in M. This is a contradiction, because all vertices in zig(G,M, u, σ, π), except454

possibly the last one, are in V(M). ◀455

CVIT 2016

23:14 A Formal Analysis of RANKING

Listing 5: Formalising the specification of make-perfect’s output in Isabelle/HOL.
function make−p e r f e c t−matching :: " ' a graph ⇒ ' a graph ⇒ ' a graph " where

2 "make−p e r f e c t−matching G M = (
i f (∃x . x ∈ Vs G ∧ x /∈ Vs M)

4 then make−p e r f e c t−matching (G \ {SOME x . x ∈ Vs G ∧ x /∈ Vs M}) M
e l s e G

6)
" i f " f i n i t e G"

8 | "make−p e r f e c t−matching G M = G" i f " i n f i n i t e G"

v1

v1

v1

v2

v3

v4

u1

u2

u3

u4

(a)

v1v1

v2

v4

v3

u1

u2

u3

u4

(b)

v1

v1

v1

v3

v2

v4

u1

u2

u3

u4

(c)

v1

v1

v3

v1

v2

v4

u1

u2

u3

u4

(d)

Figure 3 Illustrating Lemma 2, where v = v3, and M(v3) = u1. Initially (3a), v3 is unmatched.
Moving it further down in the ranking (3b) does not change the partner of u1. Moving v3 up in the
ranking can either (3c) also leave u1 untouched, or (3d) change the partner of u1.

Lastly, we show that, given a bipartite graph G and a maximum cardinality matching456

M for that graph, we can recursively remove the vertices that do not occur in M. To do457

that we define a recursive function, make-perfect, to remove these vertices and then prove458

the following lemma by computation induction, using the computation induction principle459

corresponding to make-perfect. Listing 5 shows the formalisation of that function.460

▶ Lemma 9. Let G be a bipartite graph w.r.t. σ and π. Let M be a ranking-matching w.r.t.461

G, σ, and π, and M′ be a ranking-matching w.r.t. make-perfect(G,M), σ, and π. We have462

that |M′| ≤ |M|.463

This last lemma leads to the final theorem below.464

▶ Theorem 3. Let G be a bipartite graph w.r.t. σ and π. Let M be a maximum cardinality465

matching for G. We have that 1− (1− 1
|M|+1)|M| ≤ ER∼RANKING(G,π)[|R|]/|M|.466

Proof. This follows immediately from Lemma 9, Theorem 1, and the fact that the size of a467

maximum cardinality matching for make-perfect(G,M) is the same as the size ofM, ifM is468

a maximum cardinality matching for G. ◀469

5.4 Proving Lemma 2470

Until now we have not discussed how we formalised Lemma 2 – we believe it better fits471

here as its proof is a combinatorial argument. Graphically, Fig. 3 shows some instances of472

Lemma 2 for v = v3 and M(v3) = u1. No matter where v3 is put, u1 is always matched to a473

vertex of rank at most 3. BM prove this Lemma by stating that the difference, if any, between474

the matchings computed by online-match before and after moving the offline vertex is also475

an alternating path, where the ranks of the offline vertices traversed by that path increase.476

M. Abdulaziz and C. Madlener 23:15

Listing 6: The formalisation of Theorem 4
abbreviation matching−i n s t a n c e−nat :: " nat ⇒ (nat × nat) graph " where

2 " matching−i n s t a n c e−nat n ≡ {{(0 , k) , (Suc 0 , k) } | k . k < n}"

4 definition r a n k i n g−i n s t a n c e s−nat :: " nat ⇒ (nat × nat) graph s e t " where
" r a n k i n g−i n s t a n c e s−nat n ≡ {G. max−ca rd−matching G (matching−i n s t a n c e−nat n) ∧

6 f i n i t e G ∧ G ⊆ {{(0 , k) , (Suc 0 , l) } | k l . k < 2∗n ∧ l < 2∗n}} "

8 definition a r r i v a l−o r d e r s :: " (nat × nat) graph ⇒ (nat × nat) l i s t s e t " where
" a r r i v a l−o r d e r s G ≡ p e r m u t a t i o n s−o f−s e t {(Suc 0 , l) | l . ∃k . {(0 , k) , (Suc 0 , l) } ∈ G}"

10

definition o f f l i n e−v e r t i c e s :: " (nat × nat) graph ⇒ (nat × nat) s e t " where
12 " o f f l i n e−v e r t i c e s G ≡ {(0 , k) | k . ∃ l . { (0 , k) , (Suc 0 , l) } ∈ G}"

14 definition comp−r a t i o−nat where
"comp−r a t i o−nat n ≡

16 Min {Min { measure−pmf . e x p e c t a t i o n
(wf−r a n k i n g . r a n k i n g−prob G π (o f f l i n e−v e r t i c e s G)) ca rd

18 / ca rd (matching−i n s t a n c e−nat n)
|π . π ∈ a r r i v a l−o r d e r s G}

20 | G . G ∈ r a n k i n g−i n s t a n c e s−nat n}"

22 theorem comp−r a t i o−l i m i t ' :
assumes " c o n v e r g e n t comp−r a t i o−nat "

24 shows "1 − exp (−1) ≤ (l im comp−r a t i o−nat) "

Again, like other combinatorial parts of the analysis, graphically this is clearly evident:477

Fig. 3d shows the difference between online-match(G, π, σ) and online-match(G, π, σ[v3 7→ 1]).478

The blue edge was removed from the original matching, and the two red edges are added479

instead. The three edges form an alternating path w.r.t. to the original matching.480

However, to formalise this argument would be as difficult as for Lemma 3. Indeed, we found481

out that there is no reason to construct the entire difference between the two matchings just482

to reason about the rank of the vertex vi to which u is matched in online-match(G, π, σ[v 7→483

i]). With this approach, the lemma follows almost immediately from the specification484

ranking-matching. Hence, the formal proof is much shorter than BM’s approach.485

6 The Competitive Ratio in the Limit486

BM claim that the competitive ratio tends to 1−1/e if the matching’s size tends to infinity.487

The main complication of showing that is to show that the competitive ratio converges, which488

they do not address at all. We formalised the following.489

▶ Theorem 4. Let Mn denote {{(0, k), (1, k)} | 1 ≤ k ≤ n}. Let Γn denote graphs in the490

power set of {{(0, k), (1, l)} | 1 ≤ k, l ≤ 2n} and that have Mn as a maximum cardinality491

matching. Let πn denote S({(1, k) | 1 ≤ k ≤ 2n}). If Qn converges, then Qn tends to 1− 1/e492

as n tends to ∞, where Qn denotes min(G,π)∈Γn×πn
ER∼RANKING(G,π)[|R|]/|Mn|.493

We only prove the limit for a specific set of bipartite graphs, namely, Γn. We conjecture494

that Γn is isomorphic to the set of all bipartite graphs with maximum cardinality matchings495

of size n. Despite it being trivial, it was impressive that the part of the proof of this lemma496

which pertains to arithmetic manipulation was almost completely automated using Eberl’s497

tool [6]. The other part of the proof was to show that Γn is finite, which was tedious.498

The more interesting part would be to show that Qn converges. In BM, they do not prove499

that, yet they do not have it as an assumption in their theorem statement. One way to show500

that this assumption holds is to use the theorem by KVV showing that no online algorithm501

for bipartite matching has a better competitive ratio that 1− 1/e. However, formalising that502

theorem is beyond the scope of our project.503

CVIT 2016

23:16 A Formal Analysis of RANKING

7 Discussion504

KVV’s paper on online bipartite matching was a seminal result in the theory of online505

algorithms and matching. Its interesting theoretical properties, together with the emergence506

of online matching markets have inspired a lot of generalisations to other settings, e.g. for507

weighted vertices [3], online bipartite b-matching [13], the AdWords market [15], which508

models the multi-billion dollars industry online advertising industry, and general graphs [8],509

which models applications like ride-sharing. All of this means an improved understanding of510

the theory of online-matching, and especially RANKING, is of great interest.511

Indeed, as stated earlier, multiple authors studied the analysis of RANKING. We mention512

here the most relevant five approaches: 1. Goel and A. Mehta [10], tried to simplify the proof513

and fill in a “hole” in KVV’s original proof, in particular in the proof of Lemma 6 in KVV’s514

original paper, 2. Birnbaum and C. Mathieu [4] also provided a simple, primarily combinat-515

orial, proof for RANKING, 3. Devanur, Jain, and Kleinberg [5] whose main contribution was516

to model the algorithm as a primal-dual algorithm, in an attempt to unify the approaches517

for analysing the unweighted, vertex-weighted, and the AdWords problem, 4. Eden, Feldman,518

Fiat, and Segal [7], who tried to simplify the proof by using approaches from theory of519

economics, and finally 5. Vazirani [20], who tried to simplify the proof of RANKING, in an520

attempt to use RANKING, or a generalisation of it, to solve AdWords. However, despite521

all of these attempts, the proof of RANKING’s correctness is still considered difficult to522

understand, e.g. Vazirani’s latest trial to generalize it had a critical non-obvious flaw in the523

combinatorial part of the analysis [20], which took months of reviewing to find out.524

We believe this formalisation serves two purposes. First, it is yet another attempt to525

further the understanding of this algorithm’s analysis. From that perspective, our work526

achieved two things. 1. It further clarified the complexity of the combinatorial argument527

underlying the analysis of this algorithm by providing a detailed proof for how one could528

generalise the competitiveness of the algorithm from bipartite graphs with perfect matchings529

to general bipartite graphs. We note that this part of the analysis is analogous to the530

“no-surpassing property” in Vazirani’s work [20], which is where his attempt to generalise531

RANKING to AdWords fell apart, further confirming our findings regarding the complexity532

of this part of the analysis. 2. We significantly simplified the analysis of the consequences of533

changing the ranking of an offline vertex.534

Another outcome of this project is interesting from a formalisation perspective. It535

further confirmed the previously reported observation that it is particularly hard to formalise536

graphical or geometric arguments and concepts. E.g. verbally, let alone formally, encoding the537

intuition behind shifts-to, which is a primarily graphical concept, is extremely cumbersome.538

We hypothesise that this is an inherent complexity in graphical concepts and arguments539

which manifests itself when the graphical argument is put into prose.540

One point which we believe would particularly benefit from further study is that of541

modelling online computation. In its full generality, online computation is computation where542

the algorithm has access only to parts of the input, which arrive serially, but not the whole543

input. The way we model our algorithm is ad-hoc and does not capture that essence of online544

computation in its full generality. It remains an interesting question how can one model545

online computation, more generally. In addition to the theoretical interest, a satisfactory546

answer to that question is essential if one is to show that the competitive ratio of RANKING547

is optimal for online algorithms, which is a main result of KVV.548

M. Abdulaziz and C. Madlener 23:17

References549

1 The Hungarian method for the assignment problem - Kuhn - 1955550

- Naval Research Logistics Quarterly - Wiley Online Library. ht-551

tps://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109.552

2 Mohammad Abdulaziz, Kurt Mehlhorn, and Tobias Nipkow. Trustworthy graph algorithms553

(invited paper). In MFCS, 2019.554

3 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online Vertex-555

Weighted Bipartite Matching and Single-bid Budgeted Allocations. In Proceedings of the556

Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San557

Francisco, California, USA, January 23-25, 2011, 2011.558

4 Benjamin E. Birnbaum and Claire Mathieu. On-line bipartite matching made simple. SIGACT559

News, 2008.560

5 Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized Primal-Dual Analysis561

of RANKING for Online Bipartite Matching. In Proceedings of the Twenty-Fourth Annual562

ACM-SIAM Symposium on Discrete Algorithms, January 2013.563

6 Manuel Eberl. Verified Real Asymptotics in Isabelle/HOL. In Proceedings of the 2019 on564

International Symposium on Symbolic and Algebraic Computation, ISSAC 2019, Beijing,565

China, July 15-18, 2019, 2019.566

7 Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An Economics-Based Analysis of567

RANKING for Online Bipartite Matching. In Symposium on Simplicity in Algorithms (SOSA),568

January 2021.569

8 Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc.570

Online Matching with General Arrivals, April 2019. γarXiv:1904.08255.571

9 Michele Giry. A categorical approach to probability theory. In Categorical Aspects of Topology572

and Analysis, 1982.573

10 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with574

applications to Adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on575

Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, 2008.576

11 Johannes Hölzl. Construction and Stochastic Applications of Measure Spaces in Higher-Order577

Logic. PhD thesis, Technical University Munich, 2013.578

12 John E. Hopcroft and Richard M. Karp. An n\(\̂mbox5/2\) Algorithm for Maximum Matchings579

in Bipartite Graphs. SIAM J. Comput., 1973.580

13 Bala Kalyanasundaram and Kirk R Pruhs. An optimal deterministic algorithm for online581

b-matching.582

14 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite583

matching. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of584

Computing - STOC ’90, 1990.585

15 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. AdWords and586

generalized online matching. J. ACM, 2007.587

16 Milena Mihail and Thorben Tröbst. Online Matching with High Probability, December 2021.588

γarXiv:2112.07228.589

17 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant590

for Higher-Order Logic. 2002.591

18 Lawrence C Paulson. Isabelle: A Generic Theorem Prover. 1994.592

19 Vijay V. Vazirani. Online Bipartite Matching and Adwords, February 2022. γarXiv:2107.10777.593

20 Vijay V. Vazirani. Online Bipartite Matching and Adwords (Invited Talk). In 47th International594

Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26,595

2022, Vienna, Austria, 2022.596

CVIT 2016

http://arxiv.org/abs/1904.08255
http://arxiv.org/abs/2112.07228
http://arxiv.org/abs/2107.10777

23:18 A Formal Analysis of RANKING

Appendix: Isabelle/HOL Listings597

Listing 7: The formalisation of graphs and matching we use in Isabelle/HOL
l o c a l e graph−d e f s =

2 f i x e s E :: " ' a s e t s e t "

4 abbreviation " graph−i n v a r E ≡ (∀e∈E . ∃u v . e = {u , v} ∧ u ̸= v) ∧ f i n i t e (Vs E) "

6 l o c a l e graph−abs =
graph−d e f s +

8 assumes graph : " graph−i n v a r E"

10 definition matching where
" matching M ←→ (∀e1 ∈ M. ∀e2 ∈ M. e1 ̸= e2 −→ e1 ∩ e2 = {}) "

M. Abdulaziz and C. Madlener 23:19

Listing 8: Formalising the different distributions we need in our proof.
abbreviation rank−matched :: " nat ⇒ boo l pmf" where

2 " rank−matched t ≡
do {

4 σ ← pmf−o f−s e t (p e r m u t a t i o n s−o f−s e t V) ;
l e t R = o n l i n e−match G π σ ;

6 r e t u r n−pmf (σ ! t ∈ Vs R)
}"

8

definition matched−b e f o r e :: " nat ⇒ boo l pmf" where
10 " matched−b e f o r e t ≡

do {
12 σ ← pmf−o f−s e t (p e r m u t a t i o n s−o f−s e t V) ;

v ← pmf−o f−s e t V ;
14 l e t R = o n l i n e−match G π σ ;

l e t u = (THE u . {u , v} ∈ M) ;
16 r e t u r n−pmf (u ∈ Vs R ∧ i n d e x σ (THE v . {u , v} ∈ R) ≤ t)

}"
18

lemma matched−b e f o r e−un i fo rm−u : " matched−b e f o r e t = do
20 {

σ ← pmf−o f−s e t (p e r m u t a t i o n s−o f−s e t V) ;
22 u ← pmf−o f−s e t (s e t π) ;

l e t R = o n l i n e−match G π σ ;
24 r e t u r n−pmf (u ∈ Vs R ∧ i n d e x σ (THE v . {u , v} ∈ R) ≤ t)

}"
26

abbreviation " matched−b e f o r e−t−s e t t ≡
28 do {

σ ← pmf−o f−s e t (p e r m u t a t i o n s−o f−s e t V) ;
30 l e t R = o n l i n e−match G π σ ;

r e t u r n−pmf {u ∈ s e t π . u ∈ Vs R ∧ i n d e x σ (THE v . {u , v} ∈ R) ≤ t }
32 }"

It is formalised as rank_matched, I′′
t is formalised as matched_before, matched_before_uniform_u

is the formal statement showing that the distribution of a randomly chosen online vertex is matched
to an offline vertex of rank at most t is the same as I′′

t , and I∗
t is formalised as matched_before_t_set.

Listing 9: The definitions of paths and augmenting paths and Berge’s lemma as formalised
in Isabelle/HOL.

c o n t e x t f i x e s G :: " ' a s e t s e t " beg in
2 i n d u c t i v e path where

path0 : " path [] " |
4 path1 : " v ∈ Vs G =⇒ path [v] " |

path2 : "{v , v ' } ∈ G =⇒ path (v '# vs) =⇒ path (v#v'# vs) "
6 end

8 i n d u c t i v e a l t− l i s t where
" a l t− l i s t P1 P2 [] " |

10 "P1 x =⇒ a l t− l i s t P2 P1 l =⇒ a l t− l i s t P1 P2 (x#l) "

12 definition augment ing−path where
" augmenting−path M p ≡

14 a l t− l i s t (λe . e /∈ M) (λe . e ∈ M) (edges−o f−path p)
∧ (l e n g t h p ≥ 2) ∧ hd p /∈ Vs M ∧ l a s t p /∈ Vs M"

16

abbreviation " augpath E M p ≡ path E p ∧ d i s t i n c t p ∧ augment ing−path M p"
18

lemma Berge−1 :
20 assumes f i n i t e : " f i n i t e M" " f i n i t e M' " and

match ings : " matching M" " matching M' " and
22 l t−matching : " ca rd M < card M' " and

doub l e ton−neq−edges : "∀e∈(M ⊕ M') .∃u v . e = {u , v} ∧ u ̸= v " "∀e∈M. ∃u v . e = {u ,
v} ∧ u ̸= v "

24 shows "∃p . augmenting−path M p ∧ path (M ⊕ M') p ∧ d i s t i n c t p"

CVIT 2016

23:20 A Formal Analysis of RANKING

Listing 10: Formal statement of Lemma 1.
lemma rank−t−unmatched−prob−bound :

2 " t < card V =⇒
1 − measure−pmf . prob (rank−matched t) { True } ≤

4 1 / (ca rd V) ∗ (\<Sum>s≤t . measure−pmf . prob (rank−matched s) { True }) "

Listing 11: Formal statement of Lemma 4.
lemma

2 assumes "X ⊆ s e t π"
assumes " b i p a r t i t e M (s e t π) (s e t σ) "

4 assumes " matching M"
shows

6 remove−o n l i n e−v e r t i c e s−z i g−z i g−eq :
" v ∈ s e t σ =⇒

8 ∀x ∈ X. ((∃v ' . {x , v ' } ∈ M) −→ i n d e x σ (THE v ' . {x , v ' } ∈ M) < i n d e x σ v)
=⇒

z i g (G \ X) (M \ X) v π σ = z i g G M v π σ " and
10 remove−o n l i n e−v e r t i c e s−zag−zag−eq :

"u ∈ s e t π =⇒
12 ((∃v . {u , v} ∈ M =⇒

∀x ∈ X. ((∃v . {x , v} ∈ M) −→
14 i n d e x σ (THE v . {x , v} ∈ M) < i n d e x σ (THE v . {u , v} ∈ M)))) =⇒

zag (G \ X) (M \ X) u π σ = zag G M u π σ "

Listing 12: Formal statement of Lemma 5.
lemma\<^marker><tag impor tan t> r a n k i n g−matching−z i g−zag−eq :

2 assumes "{u , x} ∈ M"
assumes " x ∈ s e t σ "

4 assumes " r a n k i n g−matching G M π σ "
assumes " r a n k i n g−matching (G \ {x }) M' σ π"

6 shows " z i g (G \ {x }) M' u σ π = zag G M u π σ "

Listing 13: Formal statement of Lemma 6.
lemma remove−o f f l i n e−v e r t e x−d i f f− i s−z i g :

2 assumes " r a n k i n g−matching G M π σ "
assumes " r a n k i n g−matching (G \ {x }) M' π σ "

4 assumes " x ∈ s e t σ "
shows "M ⊕ M' = s e t (edges−o f−path (z i g G M x π σ)) "

Listing 14: Formal statement of Lemma 9.
lemma r a n k i n g−matching−ca rd−l e q−on−p e r f e c t−matching−graph :

2 assumes " r a n k i n g−matching G M π σ " " r a n k i n g−matching (make−p e r f e c t−matching G N)
M' π σ "

shows " ca rd M' ≤ ca rd M"

Listing 15: The formalisation of Theorem 3.
lemma comp−r a t i o−no−l i m i t :

2 " measure−pmf . e x p e c t a t i o n r a n k i n g−prob ca rd / (ca rd V) ≥ 1 − (1 − 1/(ca rd V + 1)) ^
(ca rd V) "

	1 Introduction
	2 Basic Definitions and Notation
	3 RANKING
	3.1 Competitive Ratio of RANKING

	4 Competitiveness for Bi-Partite Graphs with Perfect Matchings
	5 Lifting the Competitiveness to General Bi-Partite Graphs
	5.1 Alternating Paths, Augmenting Paths, and Berge's Lemma
	5.2 online-match's Behaviour after Removing a Vertex
	5.3 Finishing the Proof
	5.4 Proving Lemma 2

	6 The Competitive Ratio in the Limit
	7 Discussion

