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Abstract

We devise a method to exactly compute the length of the
longest simple path in factored state spaces, like state spaces
encountered in classical planning. Although the complexity
of this problem is NEXP-hard, we show that our method
can be used to compute practically useful upper-bounds on
lengths of plans. We show that the computed upper-bounds
are significantly (in many cases, orders of magnitude) better
than bounds produced by previous bounding techniques and
that they can be used to improve the SAT-based planning.

Introduction
Many techniques for solving problems defined on transi-
tion systems, like SAT-based planning (Kautz and Selman
1992) and bounded model checking (Biere et al. 1999), ben-
efit from knowledge of upper bounds on the lengths of solu-
tion transition sequences, aka completeness thresholds. If N
is such a bound, and if a solution exists, then that solution
need not comprise more than N transitions.

In AI planning, upper bounds on plan lengths have two
main uses related to SAT-based planning. Firstly, like for
bounded model-checking, an upper bound on plan lengths
can be used as a completeness threshold, i.e. to prove a plan-
ning problem has no solution. Secondly, it can be used to
improve the ability of a SAT-based planner to find a solu-
tion. Typically, a SAT-based planner queries a SAT solver to
search for plans of increasing lengths, aka horizons, going
through many unsatisfiable formulae until the given horizon
is longer than the shortest possible plan. If a horizon longer
than the shortest plan were initially provided, the planner
can avoid many of the costly unsatisfiable queries (Gerevini,
Saetti, and Vallati 2015). Using plan length upper bounds as
horizons in this way was shown to increase the coverage of
SAT-based planners (Rintanen and Gretton 2013; Abdulaziz,
Gretton, and Norrish 2017; Abdulaziz 2019).

Biere et al. identified the diameter (d) and the recur-
rence diameter (rd ), which are topological properties of the
state space, as completeness thresholds for bounded model-
checking of safety and liveness properties, respectively. d is
the longest shortest path between any two states. rd is the
length of the longest simple path in the state space, i.e. the
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length of the longest path that does not traverse any state
more than once. Both, d and rd , are upper bounds on the
shortest plan’s length, i.e. they are completeness thresholds
for SAT-based planning. Also, d is a lower bound on rd that
can be exponentially smaller.

Computing d or rd for succinctly represented transition
systems, such as factored systems, is hindered by the worst-
case complexity of all existing methods, which is exponen-
tial or doubly-exponential in the size of the given system,
respectively. This complexity can be alleviated by compo-
sitionally computing upper bounds on d or rd instead of
exactly computing them. Compositional bounding methods
compute an upper bound on a factored transition system’s
diameter by composing together values of topological prop-
erties of state spaces of abstract subsystems (Baumgart-
ner, Kuehlmann, and Abraham 2002; Rintanen and Gretton
2013; Abdulaziz, Gretton, and Norrish 2015, 2017; Abdu-
laziz 2019), and they are currently the only practically vi-
able method to compute bounds on plan lengths or the state
space diameter. Compositional approaches provide useful
bounds on plan length or the diameter using potentially ex-
ponentially smaller computational effort compared to di-
rectly computing d or rd , since explicit representations of
only abstract subsystems have to be constructed.

In this work we study the computation of rd for state
spaces of classical planning problems, which are factored
transition systems. The longest simple path and its length
are fundamental graph properties. Thus, computing rd for
state spaces of planning problems is inherently interesting,
as it might reveal interesting properties of different planning
problems. However, our goal is to devise better composi-
tional methods to compute upper bounds on plan lengths to
aid SAT-based planning. This raises an interesting question:
why should we focus on computing rd instead of d? This
question is reasonable since, as stated earlier, d can be com-
puted in exponentially less time than rd , and rd is an upper
bound on d that can be exponentially larger. The reason is
simple: it has been shown that d cannot be bounded by diam-
eters of projections (Abdulaziz 2017, Chapter 3, Theorem
1). Since projections are cornerstone abstractions for com-
positional bounding, a method to compute d cannot be lever-
aged for compositional bounding. On the other hand, pre-
vious authors showed that, theoretically, recurrence diame-
ters of projections can be composed to bound the concrete



system’s diameter (Baumgartner, Kuehlmann, and Abraham
2002; Abdulaziz, Gretton, and Norrish 2017). Here we ex-
plore the potential of this theoretical possibility: we study
methods to compute rd and the use of those methods to im-
prove existing compositional bounding algorithms.

Our first contribution concerns the relationship between
rd and the traversal diameter (td ), which is another state
space topological property. The best existing compositional
bounding method is due to Abdulaziz 2019, and it com-
putes traversal diameters of abstractions and composes them
into an upper bound on d and on plan-length. We show that
td is an upper bound on rd , and that rd can be exponen-
tially smaller than td . This gives an opportunity for substan-
tial improvements in the bounds computed by compositonal
bounding methods, if recurrence diameters of abstractions
are used instead of their traversal diameters. However, the
practical realisation of this improvement is contingent on
whether there is an efficient method to compute rd .

Our second, and main, contribution is that we investigate
practically useful methods to compute recurrence diameters
of factored systems that come from planning problems. We
implement two methods to compute recurrence diameters
based on the work of Biere et al. 1999. Unlike Biere et al.,
who devised their method and tested it on model-checking
problems, we test these methods on planning benchmarks
and show that it is impractical for most planning problems.
We show, however, that computing the recurrence diameter
within the compositional bounding method by Abdulaziz,
Gretton, and Norrish 2017 leads to bounds that are, as pre-
dicted theoretically, much tighter when rd is used instead of
td .

However, a challenge is that our method to compute rd
and that of Biere et al. have wort-case running times that
are doubly-exponential in the size of the given factored sys-
tem. This is much worse than the worst-case complexity of
computing td , which is singly-exponential in the size of the
factored system. This stems from the complexity of the prob-
lem of computing rd for succinct digraphs, which is NEXP-
hard (Pardalos and Migdalas 2004; Papadimitriou and Yan-
nakakis 1986). Our third contribution is that we investigate
techniques to alleviate the impact of this prohibitive worst-
case running time on the overall compositional bounding al-
gorithm by combining the computation of rd and td .

Lastly, we experimentally show that the improved bounds
lead to an improved problem coverage for state-of-the-art
SAT-based planner MP (Rintanen 2012), when the bounds
are used as horizons for it.

Background and Notation
We consider factored transition systems which are char-
acterised in terms of a set of actions. From actions we
can define a set of valid states, and then approach bounds
by considering properties of executions of actions on valid
states. Whereas conventional expositions in the planning and
model-checking literature would also define initial condi-
tions and goal/safety criteria, here we omit those features
from discussion since the state-space topological properties
we consider are independent of those features.
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Figure 1: The state spaces of the systems from Exam-
ples 1, 3, and 4.

Definition 1 (States and Actions). A maplet, v 7→ b, maps
a variable v—i.e. a state-characterising proposition—to a
Boolean b. A state, x, is a finite set of maplets. We writeD(x)
to denote {v | (v 7→ b) ∈ x}, the domain of x. For states
x1 and x2, the union, x1 ] x2, is defined as {v 7→ b | v ∈
D(x1) ∪ D(x2) ∧ if v ∈ D(x1) then b = x1(v) else b =
x2(v)}. Note that the state x1 takes precedence. An action
is a pair of states, (p, e), where p represents the precondi-
tions and e represents the effects. For action π = (p, e), the
domain of that action is D(π) ≡ D(p) ∪ D(e).
Definition 2 (Execution). When an action π (= (p, e)) is
executed at state x, it produces a successor state π(x), for-
mally defined as π(x) = if p * x then x else e ] x. We
lift execution to lists of actions

→
π , so

→
π (x) denotes the state

resulting from successively applying each action from
→
π in

turn, starting at x.
We give examples of states and actions using sets of lit-

erals, where we denote the maplet a 7→ > with the literal a
and a 7→ ⊥ with the literal a. For example, ({a, b}, {c}) is
an action that if executed in a state where a is true and b is
false, it sets c to true. D(({a, b}, {c})) = {a, b, c}. We also
give examples of sequences, which we denote by the square
brackets, e.g. [a, b, c].
Definition 3 (Factored Transition System). A set of actions
δ constitutes a factored transition system. D(δ) denotes the
domain of δ, which is the union of the domains of all the
actions in δ. Let set(

→
π ) be the set of elements in

→
π . The set

of valid action sequences, δ∗, is {→π | set(
→
π ) ⊆ δ}. The set

of valid states, U(δ), is {x | D(x) = D(δ)}. G(δ) denotes
the set of pairs {(x, π(x)) | x ∈ U(δ), π ∈ δ}, which is all
non self-looping transitions in the state space of δ.

Example 1. Consider the factored system δ = {π1 = (∅,
{v1, v2}), π2 = (∅, {v1, v2}), π3 = (∅, {v1, v2}), π4 = (∅,
{v1, v2})}. Figure 1a shows G(δ), i.e. the state space of δ,
where different states defined on the variables D(δ) = {v1,
v2} are shown. Since every state can be reached via one
action from every other state, the state space is a clique.

For a system δ, a bound on the length of action sequences
is EXP(δ) = 2|D(δ)| − 1 (i.e. one less than the number
of valid states), where | • | denotes the cardinality of a set
or the length of a list. Other bounds employed by previ-
ous approaches are topological properties of the state space.
One such topological property is the diameter, suggested by
Biere et al. 1999, which is the length of the longest shortest
path between any two states in the state space of a system.



Definition 4 (Diameter). The diameter, written d(δ), is the
length of the longest shortest action sequence, formally

d(δ) = max
x∈U(δ),→π∈δ∗

min
→
π (x)=

→
π
′
(x),
→
π
′
∈δ∗
|→π
′
|

Note that if there is a valid action sequence between any
two valid states of δ, then there is a valid action sequence be-
tween them which is not longer than d(δ). Thus it is a com-
pleteness threshold for bounded model-checking and SAT-
based planning. Another topological property that is an up-
per bound on plan lengths is the recurrence diameter, which
is the length of the longest simple path in the state space of
a transition system. It was proposed by Biere et al. 1999.

Definition 5 (Recurrence Diameter). Let distinct(x,
→
π ) de-

note that all states traversed by executing
→
π at x are distinct

states. The recurrence diameter is the length of the longest
simple path in the state space, formally

rd(δ) = max
x∈U(δ),→π∈δ∗,distinct(x,

→
π )

|→π |

Example 2. For the system δ from Example 1, d(δ) =
1, since every state can be reached with one action from
every other state. Nonetheless, rd(δ) = 3 as there are
many paths with 3 actions in the state space that tra-
verse distinct states, e.g. executing the action sequence
[π1, π2, π3] at the state {v1, v2} traverses the distinct states
[{v1, v2}, {v1, v2}, {v1, v2}, {v1, v2}].

Note that in general rd is an upper bound on d, and that it
can be exponentially larger than d.
Theorem 1 (Biere et al. 1999). For any system δ, we have
that d(δ) ≤ rd(δ). Also, there are infinitely many systems
for which the recurrence diameter is exponentially (in the
number of state variables) larger than the diameter.

Like d, rd is a completeness threshold for SAT-based
planning and for safety bounded model-checking but, unlike
d, rd is also a completeness threshold for bounded model-
checking of liveness properties, which was the original rea-
son for its inception (Biere et al. 1999).

Algorithms have been developed to calculate both prop-
erties for digraphs, and those algorithms can be directly
applied to state spaces of explicitly represented (e.g. tabu-
lar) transition systems. Exact algorithms to compute d have
worse than quadratic runtimes in the number of states (Fred-
man 1976; Alon, Galil, and Margalit 1997; Chan 2010;
Yuster 2010), and approximation algorithms have super-
linear runtimes (Aingworth et al. 1999; Roditty and Vas-
silevska Williams 2013; Chechik et al. 2014; Abboud,
Williams, and Wang 2016). The situation is worse for
rd , whose computation is NP-hard (Pardalos and Migdalas
2004) for explicitly represented systems. The impractical-
ity of computing d and rd is exacerbated in settings where
transition systems are described using factored representa-
tions, like in planning and model-checking (Fikes and Nils-
son 1971; McMillan 1993). In particular, the worst-case run-
ning times are exponentially worse because, in the worst
case, all known methods construct an explicit representation
of the state space to compute d or rd of the state space of a

succinctly represented system. This follows the general pat-
tern of complexity exponentiation of graph problems when
graphs are succinctly represented, where, for succinct di-
graphs, the complexity of computing d is ΠP

2 -hard (Hemas-
paandra et al. 2010) and the complexity of computing rd is
NEXP-hard (Papadimitriou and Yannakakis 1986), instead
of being in P and NP-hard, respectively, in the explicit case.

Compositional Bounding of the Diameter
The prohibitive complexity of computing d or rd suggests
they can only be feasibly computed for very small factored
systems, systems that are much smaller than those that arise
in typical classical planning benchmarks. However, another
possibility is to utilise the computation of d or rd within
compositional plan length upper bounding techniques. Ex-
isting techniques compute an upper bound on d, for a given
system, by computing topological properties of abstractions
of the given system and then composing the abstractions’
topological properties. Those abstractions are usually much
smaller than the given concrete system, where their state
spaces can be exponentially smaller than the given system’s
state space. Thus, computing topological properties of ab-
stractions might be feasible.

Currently, the compositional bounding method by Ab-
dulaziz, Gretton, and Norrish 2017 is the most successful
in decomposing a given system into the smallest abstrac-
tions. It decomposes a given factored system using two
kinds of abstraction: projection and snapshotting. Projec-
tion (Knoblock 1994; Williams and Nayak 1997) produces
an over-approximation of the given system and it was used
for bounding by many previous authors. Snapshotting pro-
duces an under-approximation of the given system and it was
introduced by Abdulaziz, Gretton, and Norrish 2017. The
compositional method devised by Abdulaziz, Gretton, and
Norrish 2017 recursively interleaves the application of pro-
jection and snapshotting until the system is decomposed into
subsystems that can no longer be decomposed, to which we
refer here as base case systems. After the system is decom-
posed into base case systems, a topological property, which
we call the base case function, of the state space of each of
the base case systems is computed. Then the values of the
base case function applied to the different base case systems
are composed to bound the diameter of the concrete system.

Most authors used the base case function EXP, which is
one less than the number of valid states for the given base
case system (Rintanen and Gretton 2013; Abdulaziz, Gret-
ton, and Norrish 2015, 2017). A notable exception is Abdu-
laziz 2019, who used the traversal diameter, which is a topo-
logical property of the state space, as a base case function.
The traversal diameter is one less than the largest number of
states that could be traversed by any path.

Definition 6 (Traversal Diameter). Let ss(x,
→
π ) be the set of

states traversed by executing
→
π at x. The traversal diameter

is
td(δ) = max

x∈U(δ),→π∈δ∗
|ss(x,

→
π )| − 1.

Example 3. Consider the factored system δ = {π1 =
({v1, v2}, {v1, v2}), π2 = ({v1, v2}, {v1, v2}), π3 =



({v1, v2}, {v1, v2})}. The digraph in Figure 1b shows the
state space of δ. For δ, EXP(δ) = 3, while td(δ) = 1.

Abdulaziz 2019 showed that td is an upper bound on rd
and a lower bound on EXP. He also showed that td can be
exponentially smaller than EXP, as shown in the above ex-
ample. This is why, when Abdulaziz 2019 used td as a base
case function, his method computed substantially tighter
bounds than previous methods, which all used EXP.

The Recurrence Diameter Versus the
Traversal Diameter

We now study the relationship between the recurrence di-
ameter and the traversal diameter. The core insight we make
here is that rd can be exponentially smaller than td .

Theorem 2. There are infinitely many factored systems
whose recurrence diameters are exponentially smaller (in
the number of state variables) than their traversal diame-
ters.

Proof. Let, for a natural number n, Dn denote the indexed
set of state variable {v1, v2, . . . , vdlogne}. Let xni denote the
state defined by assigning all the state variablesDn, s.t. their
assignments binary encode the natural number i, where the
index of each variable from Dn represents its endianess.
Note: xni is well defined for 0 ≤ i ≤ 2dlogne − 1.

Now, for an arbitrary number n ∈ N, let 4n denote the
factored system (i.e. set of actions) {(xn+1

0 , xn+1
i ) | 1 ≤

i ≤ n} ∪ {(xn+1
i , xn+1

0 ) | 1 ≤ i ≤ n}. The recur-
rence diameter of the system 4n is 2, regardless of n, since
any action sequence that traverses more than 3 states will
traverse xn+1

0 more than once. Now, let S denote the set
of states in the largest connected component in the state
space of 4n, which has n + 1 states in it. Since for any
two states xn+1

i , xn+1
j ∈ S , there is an action sequence

→
π ∈ 4n

∗ s.t.
→
π (xn+1

i ) = xn+1
j , and since |S| = n + 1,

then the traversal diameter of 4n is n. Accordingly, and since
2|D(4n)|−2 = 2|Dn+1|−2 = 2dlogne−1 ≤ n, we have that
2|D(4n)|−2 ≤ td(4n). The theorem follows from this and
since rd(4n) = 2.

Example 4. The state space of 43 is depicted in Figure 1c.
rd(43) = 2, and td(43) = 3.

The fact that rd can be exponentially smaller than td gives
rise to the possibility of substantial improvements to the
bounds computed if we use rd as a base case function for
compositional bounding, instead of td .

Using the Recurrence Diameter for
Compositional Bounding

Here, we investigate using rd as a base case function for the
compositional algorithm by Abdulaziz, Gretton, and Nor-
rish 2017. To do that, we firstly devise a method to com-
pute rd . For explicitly represented digraphs, the computa-
tional complexity of finding the length of the longest path is
NP-hard (Pardalos and Migdalas 2004). Thus, there is not a
known method to compute it with a wort-case running time

smaller than a time exponential in the size of the given di-
graph. Biere et al. 1999 suggested the only method to com-
pute rd of which we are aware. They encode the question
of whether a given number k is rd of a given transition sys-
tem as a SAT formula. rd is found by querying a SAT-solver
for different values of k, until the SAT-solver answers posi-
tively for one k. The method terminates since rd cannot be
larger than one less the number of states in the given tran-
sition system. The size of their encoding grows linearly in
k2. The encoding of Biere et al. is based on the following
theorem, which we restate in our notation.

Theorem 3 (Biere et al. 1999). For a factored system δ and
a natural number k, we have that φ1(δ, k) is true iff rd(δ) <
k, where φ1(δ, k) denotes the conjunction of

(i) ∀(x, x′) ∈ G(δ). G(x, x′),
(ii) ∀x, x′ ∈ U(δ). if (x, x′) 6∈ G(δ), then ¬G(x, x′), and

(iii) if ∀x1x2 . . . xk+1.(∀1 ≤ i ≤ k. G(xi, xi+1)) then
(∃1 ≤ i < j ≤ k + 1. xi = xj).

Kroening and Strichman 2003 use sorting net-
works (Knuth 1998) to devise another encoding of the
above question whose size grows linearly in k log2(k).
However, they report that, due to hidden constants, their
encoding is only significantly smaller than the encoding
by Biere et al. when 150 < k. Since this is typically
well beyond recurrence diameters that can be practically
computed, we only implement the encoding of Biere et al..1

We use an SMT solver to reason about the encoding of
rd . Thus, for decidability as well as efficiency reasons, we
would like to obtain an encoding that is quantifier free,
in particular, one that fits the theory of quantifier free un-
interpreted functions. Since φ1 is universally quantified,
we reformulate it to its existentially quantified dual. For
predicates Q and P of arity n, let

∧
Q(T ). P (T ) denote

the conjunction of P (T ), for all n-tuples T where Q(T )
holds. Also, let

∨
denote the analogous disjunction. Note:∧

Q(T ). P (T ) is only well defined if Q is true for only a
finite set of n-tuples. Also, we do not explicitly bind Q or
the tuple T when it is clear from context.

Encoding 1. For δ and 0 ≤ k, let φ′1(δ, k) denote the con-
junction of the formulae

(i)
∧

(x, x′) ∈ G(δ). G(x, x′),
(ii)

∧
{x, x′} ⊆ U(δ) ∧ (x, x′) 6∈ G(δ). ¬G(x, x′),

(iii)
∧

1 ≤ i ≤ k. (G(yi, yi+1) ∧
∧
i < j ≤ k + 1.

yi 6= yj), and
(iv)

∧
1 ≤ i ≤ k + 1. (

∨
x ∈ U(δ). yi = x).

The SMT formula above is defined over one constant x
for every state in U(δ), a set of uninterpreted constants {yi |
1 ≤ i ≤ k + 1}, one for every state in the simple path of
length k + 1 for which we search, and a function G that is
true for a pair of constants (x, x′) iff there is an edge from x
to state x′ in the state space of δ.

Theorem 4. φ′1(δ, k) is satisfiable iff k ≤ rd(δ).

1The largest rd we computed in all our experiments was 93.



Proof. An SMT formula is defined over a signature Σ,
which is a finite set of symbols that are either constants, un-
interpreted constants, or the standard logical connectives. A
model M for a signature is a function that maps uninter-
preted constants to objects. A model M entails a formula
φ, denoted M � φ, iff φ evaluates to true, under the stan-
dard interpretation of logical connectives, after each uninter-
preted constant v in φ is substituted byM(v). A formula φ
is satisfiable iff ∃M.M � φ.

Lemma 1. If φ′1(δ, k) is satisfiable, then there is a list of dis-
tinct states [x1, x2 . . . xk+1], such that (xi, xi+1) ∈ G(δ),
for 1 ≤ i ≤ k.

Proof summary. Now, since the formula φ′1(δ, k) is satisfi-
able, there is a modelM, s.t.M � φ′1(δ, k). From the def-
inition of entailment and the third conjunct of φ′1(δ, k), we
have that G(M(yi),M(yi+1)) andM(yi) 6= M(yj) hold,
for all 1 ≤ i ≤ k and i < j ≤ k. From this, the first,
the second, and fourth conjuncts of φ′1(δ, k), we have that
(M(yi),M(yi+1)) ∈ G(δ). This finishes our proof.

Lemma 2. If there is a list of distinct states
[x1, x2 . . . xk+1], such that (xi, xi+1) ∈ G(δ), for
1 ≤ i ≤ k, then φ′1(δ, k) is satisfiable.

Proof summary. Consider the model M defined as
M(yi) = xi, if 1 ≤ i ≤ k + 1. Note thatM is well-defined
for the set of uninterpreted constants in φ′1(δ, k), i.e. it is
well-defined for the set {yi | 1 ≤ i ≤ k + 1}. From the
assumptions of this lemma and the definition of φ′1(δ, k),
we have thatM � φ′1(δ, k). This finishes our proof.

From the definition of rd , there is a list of actions
→
π k ≡

[π1, π2 . . . πk] and a state x1 ∈ U(δ), s.t.
→
π k(x1) traverses

distinct states, iff k < rd(δ). Also, from the definition of
G(δ), for any states x and x′, there is an action πi ∈ δ s.t.
x′ = πi(x) iff (x, x′) ∈ G(δ). Accordingly, there is a list of
distinct states [x1, x2 . . . xk+1], s.t. (xi, xi+1) ∈ G(δ), for
1 ≤ i ≤ k, iff k ≤ rd(δ). The theorem follows from this
and Lemmas 1 and 2.

To use the above encoding to compute rd of a given sys-
tem δ, we iteratively query an SMT solver to check for the
satisfiability of φ′1(δ, k) for different values of k, starting at
1, until the we have an unsatisfiable formula. The largest k
for which the formula is satisfiable is rd(δ).

Observe that, to use Encoding 1, one has to build the en-
tire state space as a part of building the encoding, i.e. one
has to build the graphG(δ) and include it in the encoding. In
fact, this is true for both methods, the one by Biere et al. and
the one by Kroening and Strichman, as they are both spec-
ified in terms of explicitly represented transition systems.
This means that the worst-case complexity of computing rd
using either one of those encodings is doubly-exponential.
Indeed, this is the best possible wort-case running time for
succinct graphs generally, unless the polynomial hierarchy
collapses, since computing rd is NEXP-hard.

Experimental evaluation We use Encoding 1 as a base
case function for the compositional algorithm by Abdulaziz,
Gretton, and Norrish 2017 instead of td , which was used as
a base case by Abdulaziz 2019 and led to the tightest bounds
of any existing method. We use Yices 2.6.1 (Dutertre 2014)
as the SMT solver to prove the satisfiability or unsatisfia-
bility of the resulting SMT formulae. We run the bounding
algorithm by Abdulaziz, Gretton, and Norrish 2017 on stan-
dard planning benchmarks (from previous planning compe-
titions and ones we modified), once with td as a base case
and a second time with rd as a base case. We perform our ex-
periments on a cluster of 2.3GHz Intel Xeon machines with
a timeout of 20 minutes and a memory limit of 4GB. Our
experiments show that Encoding 1 is not practical for plan-
ning problems when used as a base case function for the
algorithm by Abdulaziz, Gretton, and Norrish 2017, where
bounds are only computed within the timeout for less than
0.1% of our set of benchmarks. This is because computing
rd can take time that is exponential in the size of the state
space, while computing td can be computed in time that is
linear in the state space (Abdulaziz 2019).

A Compact for the Recurrence Diameter
We now devise a new encoding that performs better than
Encoding 1. The new encoding exploits the factored repre-
sentation in a way that is reminiscent to encodings used for
SAT-based planning (Kautz and Selman 1992). In particu-
lar, our aim is to avoid constructing the state space in an
explicit form, whenever possible. We devise a new encoding
that avoids building the state space as a part of the encoding
and, effectively, we let the SMT solver build as much of it
during its search as needed.
Encoding 2. For a state x, let xi denote the formula (

∧
v ∈

x. vi)∧(
∧

v ∈ x. ¬vi). For δ and 0 ≤ k, let φ2(δ, k) denote
the conjunction of the formulae

(i)
∧

1 ≤ i ≤ k. πi → pre(π)i ∧eff(π)i+1 ∧ (
∧
v ∈ D(δ) \

D(eff(π)). vi ↔ vi+1),
(ii)

∧
1 ≤ i ≤ k.

∨
π ∈ δ. πi, and

(iii)
∧

1 ≤ i < j ≤ k + 1.
∨
v ∈ D(δ). vi 6= vj .

Briefly, the encoding above states that k is not rd if there
is a sequence of k actions that traverses only distinct states
if executed at some valid state. In more detail, the follow-
ing are the intuitive meanings of uninterpreted constants in
the above formulae: (i) πi, for all 1 ≤ i ≤ k and π ∈ δ, is
a Boolean variable that represents whether action π is exe-
cuted at state i, and (ii) vi, for all 1 ≤ i ≤ k + 1 and v ∈ δ,
which represents the truth value of state variable v at state
i.2

There are three main conjuncts in the encoding. The first
conjunct formalises the fact that, if an action is executed at
state i, then all of its preconditions hold at state i, all of its
effects hold at state i + 1, and all the variables that are not
in the effects will continue to have the same value at state
i+ 1 as they did at state i (i.e. the frame axiom). The second
conjunct states that at least one action must execute at state i.

2We note that this encoding can easily be formulated as a propo-
sitional formula in conjunctive normal format.



The third conjunct states that all states are pairwise distinct
by stating that for every two states, at least one variable has
a different truth value in both states.

Theorem 5. φ2(δ, k) is satisfiable iff k ≤ rd(δ).

Proof. Firstly, let φ′2(δ, k) denote

φ2(δ, k) ∧
∧

1 ≤ i ≤ k.
∧
π, π′ ∈ δ ∧ π 6= π′.¬πi ∨ ¬π′i.

Lemma 3. φ2(δ, k) is satisfiable iff φ′2(δ, k) is satisfiable.

Proof summary. ⇒ Since φ2(δ, k) is satisfiable, then there
is a model M, s.t. M � φ2(δ, k). Note that M might not
entail φ′2(δ, k) because φ′2(δ, k) has the extra conjunct that
only one action is enabled in every step, i.e. at step i, ifM �
πi and M � π′i, then π = π′. Nonetheless, conjunct (i)
of Encoding 2 necessitates that in order for an action to be
enabled in a step, all variables that are not in its effect are left
unchanged in the next step. Accordingly, all actions enabled
at a step affect the same state variables and assign all of those
variables to the same value. Thus, we can construct a model
that entails φ′2(δ, k) by leaving only one action from the set
of enabled actions at every step, and disabling the rest. We
formalise that as follows. For every 0 ≤ i ≤ k, let Πi =
{πi | π ∈ δ∧M � πi}, i.e. the set of actions enabled in step
i. Let ε be the choice function, i.e. the function that given a
set, returns an element from that set if it is not empty, and
that is otherwise undefined. The model that entails φ′2(δ, k)
isM′, defined as follows.

M′(c) =

{
⊥, if p ∈ Πi and ε(Πi) 6= p

M(c), otherwise.

⇐ Since φ′2(δ, k) is the same as φ2(δ, k) conjoined with
another formula, any model for φ′2(δ, k) is a model for
φ2(δ, k).

The theorem follows from Lemma 3, Theorem 4, and
since φ′1(δ, k) ↔ φ′2(δ, k). The latter fact follows by an in-
duction on k, and from the definition ofD(δ) and G(δ).

Experimental evaluation We experimentally test the new
encoding as a base case function for the algorithm by Ab-
dulaziz, Gretton, and Norrish 2017. Columns 2 and 3 of Ta-
ble 1 show some data on the bounds computed with both,
Encoding 2 (i.e. rd ) and td , as base case functions. We note
two observations. Firstly, many more planning problems are
successfully bounded within the timeout when Encoding 2 is
used to compute rd compared to using Encoding 1. Encod-
ing 2 performs much better than Encoding 1 in practice since
our new encoding is represented in terms of the factored rep-
resentation of the system, while Encoding 1 represents the
system as an explicitly represented state space. This leads to
exponentially smaller formulae: Encoding 2 grows quadrat-
ically with the size of the given factored system, while En-
coding 1 grows quadratically in the size of the state space,
which can be exponentially larger than the given factored
system. Indeed, Encoding 2 delegates the construction of the
explicit state space to the SMT solver, which would effec-
tively construct the state space during its search, but lazily.

This is clearly better than constructing the state space a pri-
ori when the formula is satisfiable (i.e. when k ≤ rd ) as
the SMT solver only needs to find a simple path of length
k+1. The SMT solver does this without necessarily travers-
ing the entire state space due to its search heuristics. When
the formula is unsatisfiable, the SMT solver has to perform
an exhaustive search to produce a proof of unsatisfiability,
which is equivalent to constructing the entire state space ex-
plicitly. Since all queries to the SMT solver, except for the
last one, are satisfiable, Encoding 2 is more practically effi-
cient than using Encoding 1. However, it is worth noting that
Encodings 1 and 2 worst-case running times grow doubly-
exponentially in the size of the given factored system.

Secondly, when rd is the base case function the bounds
computed are much tighter than those computed when td as
a base case function. This agrees with the theoretical pre-
diction of Theorem 2. This is shown clearly in Figure 2 and
in Table 1. In particular, in the domains TPP, ParcPrinter,
NoMystery, Logistics, OpenStacks, Woodworking, Satel-
lites, Scanalyzer, Hyp and NewOpen (a compiled Qualita-
tive Preference rovers domain), we have between two orders
of magnitude and 50% smaller bounds when rd is used as a
base case function compared to td . Also, the domain Visi-
tall has twice as many problems whose bounds are less than
109 when rd is used instead of td . Also, specially interest-
ing domains are Floortile and BlocksWorld, where the recur-
rence diameter of some of the smaller instances is success-
fully computed to be less than 10, but whose bounds using
td are more than 109. In contrast, equal bounds are found
using rd and td as base case functions in Zeno.

Further Experiments
Note that, although Encoding 2 is more efficient than En-
coding 1, the number of problems that were successfully
bounded is less when using rd as a base case function com-
pared to td , since rd can take exponentially longer to com-
pute than td . Figure 2 shows that running time difference for
problems successfully bounded using both base case func-
tions. Also Table 1 shows this in terms of the numbers of
problems bounded within 20 minutes, when using rd vs. td .

One thing we observe during our experiments is that many
of the base case systems have traversal diameters that are 1
or 2. We exploit that to improve the running time by devis-
ing a base case function that will only invoke the expensive
computation of rd in case td is greater than 2.
Definition 7.

b1(δ) =

{
rd(δ), if 2 < td(δ)

td(δ), otherwise.

Limiting the computation of rd as in the base case func-
tion b1 significantly reduces the bound computation time.
This leads to to more problems being successfully bounded
as shown in column 4 of Table 1, compared to when rd is
used. The substantially improved running time is shown in
Figure 2. We also observe that bounds computed using rd as
a base case function are exactly the same as those computed
using b1, for all problems on which they terminate. Thus,
this improvement in running time does not come at the cost
of looser bounds. Indeed, we conjecture the following.



td rd b1 b2

Domain Min. Max. Avg. #Bnd. #Sol. Min. Max. Avg. #Bnd. #Sol. Min. Max. Avg. #Bnd. #Sol. Min. Max. Avg. #Bnd. #Sol.
newopen (1440) 3e3 7e7 4e5 848 157 2e3 1e7 9e4 592 —- 2e3 4e7 2e5 845 218 2e3 4e7 2e5 844 219
logistics (407) 7e1 4e6 4e5 406 170 6e1 1e4 3e3 194 —- 6e1 1e4 2e3 193 192 6e1 1e5 4e3 200 195
elevators (210) 3e6 1e9 3e8 14 —- —- —- —- —- —- —- —- —- —- —- 3e6 1e9 3e8 14 —-

rover (141) 1e2 1e6 1e5 51 42 7e1 9e4 1e4 38 —- 7e1 8e5 7e4 52 46 7e1 8e5 7e4 52 46
nomystery (124) 9e0 6e4 1e4 70 6 9e0 9e3 2e3 70 —- 9e0 9e3 2e3 70 8 9e0 9e3 2e3 70 7

zeno (50) 4e1 5e5 8e4 50 31 4e1 4e1 4e1 1 —- 4e1 4e1 4e1 1 1 4e1 2e5 1e5 16 1
hiking (40) 1e3 1e9 4e8 22 1 —- —- —- —- —- —- —- —- —- —- 1e3 1e9 4e8 22 1
TPP (89) 2e1 6e8 4e7 16 9 2e1 4e4 8e3 15 —- 2e1 4e4 8e3 15 14 2e1 6e8 4e7 16 9

Transport (203) 4e5 2e9 3e8 14 —- —- —- —- —- —- —- —- —- —- —- 4e5 1e9 3e8 14 —-
GED (97) 7e6 7e8 3e8 5 —- —- —- —- —- —- —- —- —- —- —- 7e6 7e8 3e8 5 —-

woodworking (60) 2e2 8e7 2e7 10 —- 6e1 1e4 5e3 3 —- 6e1 1e4 5e3 3 1 2e2 1e7 3e6 10 1
visitall (70) 7e0 2e3 6e2 4 4 7e0 7e4 1e4 7 —- 7e0 1e3 4e2 6 6 7e0 1e3 4e2 6 6

openstacks (111) 3e5 3e5 3e5 6 6 4e4 4e4 4e4 6 —- 4e4 4e4 4e4 6 6 4e4 4e4 4e4 6 6
satellite (10) 6e2 6e3 3e3 10 9 4e2 2e3 9e2 6 —- 4e2 2e3 9e2 6 5 4e2 2e3 9e2 6 5

scanalyzer (60) 4e3 4e3 4e3 1 1 6e1 6e1 6e1 1 —- 6e1 6e1 6e1 1 1 4e3 4e3 4e3 1 1
storage (30) 1e2 8e7 2e7 7 4 6e0 6e0 6e0 1 —- 6e0 6e0 6e0 1 1 1e2 8e7 2e7 7 4
trucks (33) 5e2 4e8 8e7 5 2 3e2 3e2 3e2 2 —- 3e2 3e2 3e2 2 2 3e2 4e8 8e7 5 2

parcprinter (40) 8e2 4e8 7e7 6 1 8e2 4e8 8e7 9 —- 8e2 4e8 8e7 9 3 8e2 4e8 9e7 8 2
maintenance (5) 5e1 2e3 4e2 5 4 5e1 2e3 4e2 5 —- 5e1 2e3 4e2 5 4 5e1 2e3 4e2 5 4
blocksworld (10) 1e3 5e8 1e8 5 2 8e0 8e0 8e0 1 —- 8e0 8e0 8e0 1 1 1e3 5e8 1e8 5 2

Table 1: Column 1: the domain name and the number of instances in it. Column 2: when using td as a base case function:
the minimum, maximum bound, the average bound computed, number of instances bounded (below 109), and the number of
instances solved using Madagascar with the bound as the horizon. Column 3, 4, and 5: similar to column 2, but when rd , b1,
and b2, respectively, are used as base case functions.

Conjecture 1. For any factored transition system δ, if
td(δ) ∈ {1, 2}, then td(δ) = rd(δ).

Note, however, that the number of problems successfully
bounded when using b1 as a base case function is still less
than the number of problems bounded using td . This is be-
cause the large computation cost of rd on the base cases on
which it is invoked is still much more than the cost of com-
puting td . Another technique to improve the bound com-
putation time is to limit the computation of rd to problems
whose state spaces’ sizes are bound by a constant. This is
done with the following base case function.

Definition 8.

b2(δ) =

{
b1(δ), if 50 < EXP(δ)

td(δ), otherwise.

We set 50 as an upper limit on the state space size as more
than 95% of abstractions whose rd was successfully com-
puted had values less than 50.

As shown in column 5 of Table 1, the number of prob-
lems that are successfully bounded within 20 minutes when
b2 is used as a base case function is substantially more than
those when b1 is used, especially in the domains where rd
and b1 were less successful than td . However, the bounds
computed when b2 is used are sometimes worse than those
computed when b1 is used, like in the case of TPP. Figure 2
shows this bound degradation and bound computation time
improvement for the problems on which both methods ter-
minate. Nonetheless, the bounds computed using b2 are still
much better than td , as shown in Figure 2. This is because
there are abstractions whose recurrence diameter is com-
putable within the timeout and whose state spaces have more

than 50 states. For those abstractions, td is computed instead
of rd , when b2 is used. An interesting problem is adjust-
ing the threshold in b2 to maximise the number of abstrac-
tions whose recurrence diameter can be computed within the
timeout. We do not fully explore this problem here.

Using the bounds for SAT-based planning Table 1
shows that the coverage of MP increases if we use, as hori-
zons, the bounds computed with base case functions involv-
ing rd , compared to when using td as a base case function.
An exception is Zeno, where the better bound computation
time using td is decisive. In addition to coverage, it makes
sense to take a look into how the exact running times com-
pare as many problems are solved using any of the bounds.
The plots at the bottom two rows right of Figure 2 show the
time needed for computing a plan when using different pairs
of base case functions for problems on which both meth-
ods succeed. The plots show that the planning time (exclud-
ing bound computation) using the tighter bounds is much
smaller almost always, which is to be expected. The other
shows planning time including bound computation. Interest-
ingly, although the bound computation time is more, e.g.
when using b1 than td , tighter bounds always payoff for
problems that need more than 5 seconds to solve. Thus, time
spent computing better bounds before planning is almost al-
ways well-spent.

Conclusion
The recurrence diameter was identified by many authors as
an upper bound on transition sequence lengths in the ar-
eas of verification (Baumgartner, Kuehlmann, and Abraham
2002; Kroening and Strichman 2003; Kroening et al. 2011)



and AI planning (Abdulaziz, Gretton, and Norrish 2015,
2017; Abdulaziz 2019). However, previous authors noted
that computing it is not practically useful, as it can take
exponentially longer than solving the underlying planning
or model checking problem. Nonetheless, we show that,
indeed, computing the recurrence diameter is useful when
used for compositional bounding. We do so using a SMT en-
coding that exploits the factored state space representation,
and by combining the recurrence diameter with the traversal
diameter, which is an easier to compute topological property.

Broad directions for future work include (i) devising
methods to calculate base case functions that are tighter
than the recurrence diameter and (ii) devising compositional
methods that can compute allow better problem decomposi-
tions than those by Abdulaziz, Gretton, and Norrish 2015;
2017. A third more interesting direction is devising meth-
ods that use radius concepts for compositional bounding,
which are the topological properties corresponding to the
different diameter concepts (i.e. the diameter, the traversal
diameter, and the recurrence diameter) that consider paths
starting only at the initial state. Using these radius concepts
for bounding has the potential to boost the efficiency of
bound computation as well as bound tightness. A significant
challenge is that the theory justifying existing compositional
bounding methods fully relies on the fact that the base case
function is a diameter concept (in particular, the sublist di-
ameter) (Abdulaziz, Gretton, and Norrish 2015).
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Figure 2: Different scatter-plots comparing the different bounding algorithms in terms of the quality of their bounds, the needed
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