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Abstract

We consider the problem of compositionally computing up-
per bounds on lengths of plans. Following existing work, our
approach is based on a decomposition of state-variable de-
pendency graphs (a.k.a. causal graphs). Tight bounds have
been demonstrated previously for problems where key de-
pendencies flow in a single direction—i.e. manipulating vari-
able vy can disturb the ability to manipulate v and not vice
versa. We develop a more general bounding approach which
allows us to compute useful bounds where dependency flows
in both directions. Our approach is practically most useful
when combined with earlier approaches, where the computed
bounds are substantially improved in a relatively broad vari-
ety of problems. When combined with an existing planning
procedure, the improved bounds yield coverage improve-
ments for both solvable and unsolvable planning problems.

Introduction

Many techniques for solving reachability problems in tran-
sition systems, like SAT-based planning (Kautz and Selman
1992) and bounded model checking (Biere et al. 1999), ben-
efit from knowledge of upper bounds on the lengths of tran-
sition sequences, aka completeness thresholds. If N is such a
bound, and if a transition sequence achieving the goal exists,
then that sequence need not comprise more than /N actions.

Biere et al. (1999) identify the diameter and the re-
currence diameter, which are topological properties of the
state space, as conceptually appealing upper bounds. The
diameter is the longest shortest path between any two
states. The recurrence diameter is the longest simple path
in the state space, i.e. the longest path that does not tra-
verse any state more than once. Approximate and exact
algorithms have been developed to calculate both proper-
ties given an explicit (e.g. tabular) representation of the
transition system. Exact algorithms to compute the diam-
eter have worse than quadratic runtimes in the number
of states (Fredman 1976; Alon, Galil, and Margalit 1997;
Chan 2010; Yuster 2010), and approximation approaches
have super-linear runtimes (Aingworth et al. 1999; Roditty
and Vassilevska Williams 2013; Chechik et al. 2014; Ab-
boud, Williams, and Wang 2016). The situation is even
worse for the recurrence diameter, whose computation is
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NP-Hard (Pardalos and Migdalas 2004). The impractical-
ity of those explicit algorithms is exacerbated in settings
where systems are described using factored representations,
like planning and model-checking, since a system’s explicit
representation can be exponential in the size of the corre-
sponding factored problem description.

However, compositional approaches to calculate bounds
for problems described using factored representations are
feasible. The concrete system’s (recurrence) diameter is
bounded by composing together bounds for abstract subsys-
tems. The subsystems are projections of the concrete sys-
tem. The motivation for compositional approaches is that
they provide useful approximations of plan bounds using
smaller computational effort, since only explicit representa-
tions of abstract subsystems have to be constructed. Baum-
gartner, Kuehlmann, and Abraham (2002) and Rintanen and
Gretton (2013) followed this projection-based approach to
develop procedures to compositionally bound the diameter.
This was later improved by Abdulaziz, Gretton, and Nor-
rish (2015) and Abdulaziz, Gretton, and Norrish (2017) (we
refer to those two papers as AGN1 and AGN2 hereafter).

A common drawback with previous approaches, how-
ever, is that they are only usefully applicable if the pro-
jections are induced by acyclicity in the causal/dependency
graph (Williams and Nayak 1997; Knoblock 1994). Thus it
is an open question as to whether there are practically useful
ways to upper-bound plan lengths using projections not re-
sulting from dependency graphs with acyclicity. We address
this question by developing a compositional bounding pro-
cedure which is applicable to arbitrary projections. We do
so by defining a new topological property for the state space
to which we refer as the traversal diameter. The distinctive
feature of the traversal diameter is that, for any given fac-
tored transition system, the traversal diameter of that system
is upper bounded by the product of the traversal diameters
of projections of that system. Those projections can be ob-
tained using any partition of the system’s state variables, i.e.
the restriction of having acyclic dependencies is not required
for this compositional bound.

Using the traversal diameter based compositional method
to bound concrete problems is not very practically useful
since it uses the product of all the projections’ traversal di-
ameters as the bound. However, the utility of this new pro-
cedure is most pronounced when combined with previous



state-of-the-art algorithms from AGN1 and AGN2. We use
the traversal diameter based method to further decompose
“atomic sub-problems”, which are abstractions that cannot
be further abstracted by the algorithms from AGNI1 and
AGN2. We experimentally show that this additional decom-
position improves the bounds computed by the algorithms
from AGN1 and AGN2. For instance, bounds computed us-
ing the method from AGN2 improved in 68% of the planning
problems on which we experimented, with an improvement
of at least 50% in 71% of the cases.

We also use the bounds computed by the new algorithm as
horizons for the SAT-based planner Madagascar MP (Rinta-
nen 2012). This improves the coverage of MP in both solv-
able and unsolvable planning instances compared to the de-
fault query strategies or to upper bounds computed by all
previous algorithms as horizons.

Background and Notations

Compositional bounds are defined on factored transition
systems which are purely characterised in terms of a set of
actions. From actions we can define a set of valid states, and
then approach bounds by considering properties of execu-
tions of actions on valid states. Whereas conventional expo-
sitions in the planning and model-checking literature would
also define initial conditions and goal/safety criteria, here
we omit those features from discussion since the notion of
diameter and other bounds are independent of those features.

Definition 1 (States and Actions). A maplet, v — b, maps
a variable v—i.e. a state-characterising proposition—to a
Boolean b. A state, ., is a finite set of maplets. We write D(x)
to denote {v | (v — b) € x}, the domain of x. For states
x1 and xo, the union, x1 W x4, is defined as {v — b | v €
D(x1) UD(xz2) ANif v € D(x1) then b = z1(v) else b =
x2(v)}. Note that the state x1 takes precedence. An action
is a pair of states, (p,e), where p represents the precondi-
tions and e represents the effects. For action m = (p, e), the
domain of that action is D(m) = D(p) U D(e).

Definition 2 (Execution). When an action © (= (p,e)) is

executed at state x, it produces a successor state 7w(x), for-
mally defined as w(x) = if p € x then z else e W . We

. . . = o
lift execution to lists of actions 7, so 7 (x) denotes the state

. . , . = .
resulting from successively applying each action from w in
turn, starting at x.

We give examples of states and actions using sets of lit-
erals. For example, {a,b} is a state where state variables
a is (maps to) true, b is false, and its domain is {a,b}.
({a,b},{c}) is an action that if executed in a state that has a
and b, it sets c to true. D(({a, b}, {c})) = {a, b, c}.

Definition 3 (Factored Transition System). A set of actions
d constitutes a factored transition system. D(J) denotes the
domain of 6, which is the union of the domains of all the
actions it contains. Let set(?) be the set of elements from 7.
The set of valid action sequences, 6%, is {7 | set(7) C 6}.
The set of valid states, U(0), is {x | D(z) = D(J)}. G(9)
denotes the state space of 6, i.e. the digraph whose vertices
are U(9) and edges are {(z,n(z)) | x € U(4),w € §}.
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Figure 1: a) is the largest connected component of the state
space of § in Example 1. b) and c) are the state spaces of the
projections of 6 on {vy, v2} and {vs, v4}. d) is the depen-
dency graph Gp(s) of  and e) is a lifted dependency graph
Gys for 6. f) is a quotient of the state space of §|
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Example 1. Consider the factored representation, § =
{m1 = ({o, 5}, {02}), 70 = ({1, w2}, {3}), 75 = ({7,
UQ}a {’01772})’ T4 = ({717 UQ}; {Ul})a 5 = ({Ul, U27U737
Uit {u}),me = ({vi,ve, 05,00}, {vs}), 77 = ({v1, 02,
U3, Us}, {vs, va})}. The digraph in Figure la represents the
largest connected component in the state space of 6, where
different states defined on the variables D(6) = {vy, vs vs,
v4} are shown. Interpreting § as a transition system, it
has two “modes” of operation. The first mode changes
the assignments of {vi, v2} and is represented by actions
{m1 -+ m4}. The second mode, represented by actions {rs,
e, W7 }, changes the assignments of {vs, vy} and is only en-
abled if {v, v2} are both set to true.

Compositional Bounding

For a system §, a bound on the length of action sequences
is Exp(0) = 2/P@I — 1 (i.e. one less than the size of the
state space), where | e | denotes the cardinality of a set or
the length of a list. Other bounds employed by previous ap-
proaches are topological properties of the state space like the
diameter, suggested by Biere et al. 1999.

Definition 4 (Diameter). The diameter, written d(0), is the
length of the longest shortest action sequence, formally

d(0) = max min |?/|
z€U(8),7€s* 7 (x)=7 (z),7 €6

Note that if there is a valid action sequence between any
two states, then there is a valid action sequence between
them which is no longer than the diameter. Another topo-
logical property suggested by Biere et al. 1999 as a suitable
upper bound is the recurrence diameter.

Definition 5 (Recurrence Diameter). Let distinct(z, 7) de-

.o .
note that all states traversed by executing m at x are distinct
states. The recurrence diameter is the length of the longest
simple path in the state space, formally
N
rd(0) = max ||
z€U(8), 7 €5 distinct(z, =)



Choosing a topological property as an upper bound de-
pends on many factors. Size: for a system §, d(d) can be
exponentially smaller than 7d (), which in turn can be expo-
nentially smaller than EXP(d) (Biere et al. 1999). Complex-
ity: computing EXP(J) is the easiest since it can be done in
a time linear in |D(0)|, while the diameter can be computed
in time at least quadratic in the size of the state space (Ab-
boud, Williams, and Wang 2016), and the recurrence diam-
eter is the hardest as it is NP-Hard in the size of the state
space (Pardalos and Migdalas 2004). Usability: the diame-
ter is a completeness threshold for SAT-based Al planning
and bounded model checking of safety formulae, while the
recurrence diameter is a completeness threshold for bounded
model checking of fairness formulae (Biere et al. 1999).

In this work, the most relevant trait of a topological prop-
erty is the ability to compositionally bound it. By that we
mean computing an upper bound on the topological prop-
erty of a given system by composing topological properties
of abstractions of that system. A key abstraction concept for
compositional reasoning about transition systems is projec-
tion, which is defined as follows.

Definition 6 (Projection). Projecting an object (a state x,

. o
an action T, a sequence of actions T or a factored represen-
tation §) on a set of variables vs restricts the domain of the
object or the components of composite objects to vs. Pro-

Jjection is denoted as x|z, T\, T l,s and 6|, for a state,
action, action sequence and factored representation, respec-
tively. However, for action sequences or transition systems,
an action with no effects after projection is dropped entirely.
Example 2. Ler vs; = {v1, v} and vse = {v3, v4}. A par-
tition of the domain of ¢ from Example 1 is {vs1,vsa}. The
projection oy, = {75lys, = ({7575}, {13)): Ty, =
({vs, o}, {vs}), m7los, = ({Us, 01}, {vs, ma})}. The vari-
ables {v, va} were removed from action preconditions and
effects, and actions with empty effects were removed. Fig-
ures 1b and Ic show the state spaces of the projections § |
and d ., .

Compositional techniques that use projection bound a
topological property of a system & by topological proper-
ties of a set of projections of d. Those projections are done
on a partition vs;_, of the set of state variables D(d). For
instance, for any wvsi _,, EXP(d) is equal to (and accord-

ingly bounded by) H,,SEUSL_” (Exp(d],s) +1) — 1, i.e. the
product of the state space sizes of such a set of projec-
tions. In contrast to EXP, the (recurrence) diameter can-
not generally be bounded by the (recurrence) diameters of
projections (Abdulaziz 2017, Chapter 3, Theorems 1 and
2). However, if there are acyclicities in variable depen-
dencies, there are methods that compose the recurrence di-
ameters of projections to bound on the concrete system’s
diameter (Baumgartner, Kuehlmann, and Abraham 2002;
Rintanen and Gretton 2013). We now review variable depen-
dency and the most recent of those methods from AGNI1.

Acyclicity in variable dependency has been exploited in
previous research by reasoning about the dependency/causal
graph (Williams and Nayak 1997; Knoblock 1994). We for-
mally describe that graph, reviewing precisely what is meant
by dependency.

U8

Definition 7 (Dependency). A variable vs is dependent on
vy in § (written v1—v2) iff one of the following statements
holds: (i) vi = ws, (ii) there is (p,e) € 0 such that
v1 € D(p) and vo € D(e), or (iii) there is a (p,e) € & such
that both vy and vy are in D(e). A set of variables vss is de-
pendent on vsy in § (written vs1—vsa) iff- (i) vs1Nwsy = (),
and (ii) there are v1 € vs1 and vy € vSo, Where V1 —> 5.

Definition 8 (Digraph Quotient). For a digraph G, and a
partition P of its vertices V(G), the quotient G/P of G is
the digraph with a vertex for each uw € P. G/ P has an edge
between any usy, uss € P iff G has an edge between any
u1 € usy and us € uss.

Definition 9 (Dependency Graph). Gp(s) is a dependency
graph of 6, if D(§) are its vertices and {(uy1,u2) | ug—uz A
uy,us € D(8)} are its edges. A quotient, Gys, of Gp(s) on a
partition vsi_, of D(0) is a lifted dependency graph.

Example 3. Figure 1d shows the dependency graph Gps)
of 6 from Example 1, where self-loops are omitted. Figure le
has a lifted dependency graph Gys of § which is the quotient
Gp(s)/{vs1,vs2} .

AGNlused the compositional bounding function Ngym,
defined via the recurrence below. § is the system of inter-
est, Gys is a lifted dependency graph of § used to iden-
tify abstract subproblems, and childg, (vs) denotes the set
of children of a set of varaibles vs in Gys, {vse | vsy €
V (Gys) Avs— sy }. The functional parameter b bounds pro-
jections and we refer to it as the base case function.

Definition 10 (Acyclic Dependency Compositional Bound).

N<b>(118,5,gvs) = b(atvs)(1+ Z

cechildg,q (vs)

T/’lé‘}’l, let Nsum<b> (6, gvs) = szegvs N<b>(’US, 57 gVS)'

Theorem 1. For any 6 with an acyclic lifted dependency
graph Gys, d(5) < Nsum<7"d>(5a gvs)~

Example 4. Consider Gys from Figure le, and the base case
Sunction b. Let N; denote N(b)(vs;,d,Gys) and b; denote
b(d1,,). We have (i) No = by, (ii) Ny = by + biby, and
(iii) Nsum<b> (53 gvs) = bl + b2 + b1b2-

Since previous methods only apply to dependencies with
acyclicity, it is an open question as to whether there is a com-
positional bound on plan lengths better than EXP(4) for pro-
jections not induced by acyclic lifted dependency graphs. In
this work we provide a positive answer to that question.

N(b)(c, 6, Gys))

The Traversal Diameter

The traversal diameter is one less than the largest number of
states that could be traversed by any path.

Definition 11 (Traversal Diameter). Let sS(z, ) be the set

.o .
of states traversed by executing 7 at x. The traversal diam-
eter is
N
td(d) =  max |ss(z, )| — 1.
2€U(8),7 €6*



Intuitively, the traversal diameter is a version of the diam-
eter that instead of selecting shortest action sequences that
reach the same final destination, it selects shortest action se-
quences that traverse the same states en route to the desti-
nation. It should also be clear that the traversal diameter is
upper bounded by the state space size.

Example 5. For |, from Example 2 whose state space is
shown in Figure 1b, the traversal diameter is 2.

The most appealing feature of the traversal diameter is
that it is an upper bound on the recurrence diameter (and ac-
cordingly the diameter) that can be compositionally bounded
with projections from arbitrary partitions of the state vari-
ables. In other words, unlike other topological properties, it
avoids any conditions on the dependencies between the pro-
jections used for bounding, as shown in the theorem below.
Theorem 2. For a factored representation 6 and a partition
vs1.n of D(6), 1d(8) < Musers, , (1d(6],5) + 1) — 1.

To prove Theorem 2 we begin by stating the following
propositions.

Proposition 1. For a number k, if for every x € U($) and

7 €6* |ss(x, ®)| < k+ 1, then td(5) < k.

Proposition 2. For a set of states S, let S|, denote {x|, |

x € S}. Let sat-pre(z, 7_T>) denote that preconditions of ev-

ery action in T are satisfied, if 7 is executed from z. If
— — —

sat-pre(x, ), then SS(x, 7)|,s = SS(S|ysy T Los)-

Proposition 3. For any partition vsy., of D(J),
— -
ss(z, m)| < HvSEUSL.n SS(, ) Ly

Perhaps Proposition 3 is the least obvious. Its intuitive
meaning is that a set of states is a subset of the cartesian
product of its own projections, given that the projection is
on a partition of the state variables.

Proof of Theorem 2. Consider x € U(d) and without loss
of generality, an action sequence 7 € & such that
sat-pre(z, 7). From Definition 11, for any vs, z|,, €
U(6],,) and 7|,, € 8],." we have |s8(x|,q, 7 |ye)| —

vS vs

1 < td(d],s). Theorem 2 then follows from Proposition 2,
Proposition 3 and Proposition 1. 0

Optimality of the Compositional Bound

The bound in Theorem 2 is optimal in the following sense:
any sound compositional bounding function that takes as in-
put (i) projections’ traversal diameters and (ii) the depen-
dencies between the projections, will produce a bound that
is no less than the bound specified in Theorem 2. In other
words this bound cannot be improved except by exploiting
more structure than that of the variable dependencies.

Since the optimality theorem quantifies over “composi-
tional bounding functions”, we first need to discuss how we
formulate such functions. One notion we need to introduce
is that of labelled digraphs, which are digraphs whose ver-
tices have labels. For example, a lifted dependency graph
is a graph whose vertices are labelled by sets of state vari-
ables. For a labelled digraph G, and a vertex u, the label of

w is denoted by G, (u). Also, we define and image opera-
tion for labelled digraphs that effectively changes the vertex
labels. In particular, the image h(G,) of the function h on
the labelled digraph G, is a graph that has the same ver-
tices and edges as G, but with the label of every vertex u
changed from G, (u) to h(G,(u)). In this setting, one can
see the lifted dependency graph as a labelled digraph whose
vertices are labelled each with a set of state variables.

A compositional bounding function f is a function that

takes the projections’ traversal diameters and the dependen-
cies between the projections and returns an upper bound on
the traversal diameter of the entire system. As arguments to
f, projections’ traversal diameters and their dependencies
are encoded as a labelled digraph, Gy, in which every vertex
is labelled by a natural number. This digraph has one vertex
per projection and every edge represents a dependency be-
tween two projections. Every vertex is labelled by a natural
number that is the traversal diameter of the corresponding
projection.
Theorem 3. For any digraph, Gy, with natural num-
ber labels, there is a factored system & such that:
(i) L ev (o) (G (u) + 1) — 1 < td(6), and (ii) there is a
lifted dependency graph Gys for 6, such that Gy = %(Gys),
where T(vs) = td(d],)-

The proof is made of three main steps. Firstly, for each
given projection traversal diameter m (i.e. m is a label of a
vertex u € V(Gy)) we construct a factored system 1" with
traversal diameter m. Those systems are constructed such
that: i) their union is a system with a traversal diameter more
than f(Gy), and ii) they are projections of the final construc-
tion 6. Secondly, for every dependency from projection 1!
to I"? (i.e. an edge in Gy), we construct an action that has
preconditions from I“* and effects from 1“?. Those actions
are supposed to not change the state space of the final con-
struction, they only add dependencies corresponding to the
edges in Gy. Thirdly, we show that the union of the con-
structed projections and the dependency inducing actions is
the required witness 0, i.e. its diameter exceeds f(Gy). Be-
fore we start the proof, for system ¢ and states z,y € U(d),

let z ~» y denote that there is a 7 € 6* such that 7 (z) = y.

Proof. For u € V(G), let I denote the factored system
(i.e. set of actions) {(xf, z¥) | 1 <14 < Gn(u) JU{(zf, 2¥) |
1 < i < Gn(u)}. For instance, if for a vertex u, Gy(u) =
3, the state space of 1" will look like the one depicted in
Figure 2c. Also construct those systems s.t. for u; # us we
have D(1“") N D(1"*?) = 0.

Fix some u € V(Gy). Let S(I") denote the largest con-
nected component in the state space of I, which is unique.
x ~ x¥ holds for any zf, % € S(I"), thus td(1") =
S =1 =Gn(u).f

Let § = {(xzg* Wz, 27?) | (u1,u2) € E(Gy)} U
Uu €V (Gn) 1. We now show that § satisfies requirement (i).
Again, let S(0) denote the largest connected component
in the state space of d, which is unique. Since zj* ~ ¥

holds for any i, z% € S(I"), then 2 ~+ y holds for any

z,y € 8(9), and therefore there is a path that traverses ev-
ery member of S(d). Since for u; # uz we have D(I"*) N



D(1"?) = 0, we have [S(8)| = IT,cv(gy|SI™). Since
from 1 we have LT, cv(g,)[S(1*)| = ey () (Gn(w)+1),

then HuEV(gN)(gN(u) + 1) -1 < td(d)

To show that ¢ satisfies requirement (ii), consider a rela-
belling, Gy, of Gy, where every vertex u is relabelled by the
domain of the system I". Recall that & had the set of actions
{(zg* Waxg?,27?) | (u1,u2) € E(Gy)} as a subset. These
actions are constructed such that they add dependency from
D(I") to D(I1"?) in § iff (u1,u2) € E(Gyn). Accordingly
edges of Gys represent the dependencies of § and accord-
ingly it is a lifted dependency graph of §. Also since, for
u € V(Gy), 5LD(I“) = 1", and by construction Gy is a rela-

belling of Gy, and from  we have Gy = T(Gys). 0
| {/ \} w et et
3 2 {v3,va} {v5,v6} $§2
(a) (b) ©
<d) ©

Figure 2: Referring to Example 6, (a) is a natural number
labelled graph. (b) a lifted dependency graph of the factored
system 0 from Example 6. (c), (d), (e) are the largest con-
nected components in the state spaces of the systems 1“2,
1“2 and 1", respectively. (f) is the largest connected compo-
nent in the state space of 4.

Example 6. This is an example of the construction from
Theorem 3, for the natural number labelled digraph Gy in
Figure 2a. In Gy there are three vertices uy (the root), us,
and us, labelled by the numbers 2, 3, and 2, respectively. We
construct three systems, one per vertex, shown in Figures 2c-
2e. For us the constructed system is 1" = {(xg?,z}?),
(o, ), (2t ), (a7, 207, (@3, a?), (alh, 2t}
The states are defined as xq* = {v3, 0}, 21 = {03, u},
x5 = {v3, U1}, 25> = {uv3, wa}. For ug the constructed
system is 1% = {{af0, 219, (a8, 21), (237, 217), (a3,
xo%)}. The states are defined as xy* = {v5, U1}, ©1° = {75,
va} and x5* = {vs,Tq}. For uy the constructed system is
17 = (it ), (o a0, (o3 ), (ot i) ). The
states are defined as xy* = {71, %}, x)* = {01, »}, and
zy' = {v, B}, For any o,z € S(I™), ' ~ !
holds and accordingly td(1"") = 2. Similarly, td(1"**) = 3
and td(1"?*) = 2.

The required witness is § = {(xy* Way?, x]?), (g Wzp®,
PP Ul ul" UlI", where the actions {(xy* & 42,
z1?), (xg* W g, 21®)} add to § dependencies equivalent
to the edges of Gy, i.e. the dependencies shown in Fig-
ure 2b. Also, in the constructed witness, for all states xg,
x1 € S8(8) (shown in Figure 2f) xy ~ x1 holds, and ac-
cordingly td() = 35.

Computing the Traversal Diameter

An important aspect of td is that, unlike the diameter or the
recurrence diameter, it can be computed in linear time us-
ing Algorithm 1. A principal component of computing the
traversal diameter is an algorithm to compute the weight of
the “weightiest” path in acyclic digraphs, where vertices are
assigned numerical weights. The weight of a path is the sum
of weights of all the vertices that it traverses added to the
number of edges comprising it. The weightiest path is com-
puted using the recurrence Spmax.

Definition 12 (Weighted Longest Path). For a digraph G,
let the function b : V(G) = N be a function that assigns a
natural number for every vertex in V(G). S is

S{b)(u,G) = b(u) + u,emﬁé(u)(3<b>(% g)+1)

Then, let Smax(b)(G) = max S(b)(u,G).
ueV(G)

Smax is only well-defined if G is acyclic. The runtime of
Smax is linear in the size of V' (G), if the values of S for dif-
ferent vertices are memoised and assuming that b is at most
of linear complexity. Accordingly if we use Tarjan’s (Tarjan
1972) algorithm to compute the strongly connected compo-
nents, the runtime of Algorithm 1 would be linear in the size
of the state space of the given system.

Algorithm 1: TRAVD ()

SCC :=set of strongly connected components of G ()
return Sy« (C)(G(0)/SCC), where C(s) = |s| — 1

Theorem 4. TRAVD(0) = ¢d(9).



Proof. For notational brevity, let G = G(8)/SCC, and for a
strongly connected component sce, S(sce) = S(C)(scc, G)
and child(scc) = childg(scc). Since G is a DAG, its vertices
can be topologically ordered in a list lgc ¢
Firstly, we prove TRAVD(4) < td(d). We show that for
any strongly connected component scc € G there is an ac-
tion sequence 77860 € ¢* and a state x4.. € scc, such that
S(sce) < |sS(xsees ?SCC)| — 1, which from Definitions 11
and 12, implies TRAVD(§) < td(J). We prove this by in-
duction on lgcc. The base case, lscc = [, is straightfor-
ward. For the step case lscc = scc iqcc’l and for any
scc’ € lgoe, there is a state 2’ € scc’ and an action se-
quence 7 € 5% where S(sec’) < |Ss(:(;’,7_r>/)\ — 1. Since
scc is a strongly connected component of states in G(¢), then
—! —
there is 7., € 0* and a state x5, € scc, where T 4. tra-
verses exactly all the states in scc, if executed at z4.. € scc,

= scc. We have two cases:

. ﬁ/
1.€. Ss(xscca T scc)

Case 1 (child(scc) = 0). From Definition 12, S(scc) =
!/

|scel =1 = |sS(Zsce, ?SCC)\ — 1 holds for this case. Accord-

. . . = . =/

ingly the required witness T s is the same as T ..

Case 2 (child(scc) # 0). Let scemax be a strongly con-
nected component where ¥ scc’ € child(scc). S(sec’) <
S(s¢Cmax)- Because scemax € child(sce) we have scemax €
Uscor and accordingly fiom the inductive hypothesis there
are Tmax € SCCmax and Tmax € 0% such that S(sccmax) <

|5S(Zmax, Tmax)| — 1.(1) Also, because scemax € child(scc)
and since both scc and sccmay are strongly connected com-

—r . 57 _

ponents, there must be 1 € 6%, where T ;.. ~T (Tgee) =
2 — —/ - =

Tmax-- We now show that Tsee = Tgoo™T T max

is the required witness. First, it is easy to see that
—/ — — .
8S(Zscey T gee) U SS(Tmax, Tmax) € SS(Tsees T see)- Since
. —

scemax € child(scc), then sS(Tmax, Tmax) is disjoint with
scc. Accordingly \SS(Q:SCC,;SCCH + \SS(:L’max,?maxﬂ <
|ss(Zsee, ?SCC)L From this, (1), and Definition 12 we have
S(sce) < |88(Tsee, Tsee)| — 1.

Secondly, we prove td(d) < TRAVD(J) by showing that
for any scc € G, xs.c € scc, and ?SCG € 0%, we have
1SS(Zsce, Tsce)| — 1 < S(scc). Our proof is again by in-
duction on the list lscc. The base case, lscc = [], is
straightforward. The step case lscc = scc i Ugqe, and
we have that for any scc’ € lyo, @' € sec, and ?I € 0%,

|ss(z/, 7_r>/)| — 1 < S(scc’) holds. We have two cases:

Case 1 (ss(zscc, ?Scc) C sce). Since $S(Tsec, ?Scc) C scc
then |SS(zsee, 7)| < |scc|. From Definition 12, we know
that |scc| — 1 < S(scc), and accordingly |8S(Z e, ?sccﬂ -
1 < S(scc).

"For alist [, h :: [ is [ with the element h appended to its front.
2For two lists [ and l2, 11 —~12 denotes their concatenation.

— . —
Case 2 ( SS(Zsces Tsee) L sco). Since SS(Tsee, Tsee) L

5
scc, then there are Tgee, ™, and Tchilg Such that:
s

A — .. —/
(l) Tsce = Tgee T 0 Tchilds (”) SS(CBSCC,TFSCC) g SCC,

. —

and (iii) letting Tchid = (T eo(Tsce)), Tenild € SCCehild

holds, for some scceniig € child(sce). Using the same argu-
7

ment as the last case, we have |SS(Zsce, T 4..)| < |scc|-(*)

Since Tehilg € Sccehid, and from the inductive hypothesis,

=
we have that |SS(Zehild, Tehild)| — 1 < S(sccehiig)- Then us-
ing (*) and since SS(Zchild, Tchild) and scc are disjoint, we

have |SS(Tsce, ?SCC)\ — 1 </|sce| + S(sccenig)- From Defi-
nition 12, we have |scc| + S(sccenig) < S(scc) and accord-

ingly |88(Z sce; Tsee)| — 1 < S(sce). O

Example 7. Consider the projection 4|, of 0 from
Example 2 as input to Algorithm 1. The first step
in Algorithm 1 is to compute the SCCs of the state
space G(6). G(8) is shown in Figure 1b, and it has
three strongly connected components, thus SCC =
{{vroz, 1o}, {1 B2}, {viva}}. Those connected compo-
nents induce the quotient of the state space shown in Fig-
ure If. Next, the algorithm computes Smax(C)(G(0)/SCC).
We have S(C)({ni7z}) = CHww}) = 0 and
S(C)({vivz}) = C({mrp}) = 0. S(C) ({02, 1iv2}) =
C{orms, T }+max{S(C) ({oy1}), S(C)({vrm 1)} +1 =
14041 = 2. Thus, Smax(C)(G(3)/SCC) = 2, which is the
traversal diameter of the state space of 0|, and the value
returned by Algorithm 1.

Tightness of the Traversal Diameter

Having a product of the traversal diameters of all projections
as a compositional bound may not seem like a practically
helpful bound. However, it is a substantial improvement over
what can currently be done in the case when there is not
a non-trivial acyclic lifted dependency graph. When given
a set of projections without acyclicity in the dependencies
between them, existing compositional bounding approaches
use the product of the projected state space sizes EXP(J) as
a bound (Rintanen and Gretton 2013, AGN1, and AGN2).
Using the product bound of Theorem 2 is a substantial im-
provement over that because, as shown in the next theorem,
the traversal diameter can be exponentially smaller than the
size of state space.

Theorem 5. There are infinitely many factored systems
whose traversal diameters are exponentially smaller (in the
number of state variables) than the size of their state spaces.

Proof. For an arbitrary number n € N, we construct a sys-
tem whose state space size is a factor of n more than its
traversal diameter. Let x;, for 0 < ¢ < n, be n + 1 states.
Consider the system {(zg,z;) | 1 < i < n}. The traversal
diameter of this system is 1 since, the only possible transi-
tions are from state x to a state x;, for 1 < i < n. However
the system’s state space has at least n + 1 states. O

Example 8. 6|, from Example 2 whose state space is
shown in Figure Ic is an example of the above construction



with n = 3. We can take xo, x1, x2, and x3 to be U30s, U3y,
U3y, and vsvy, respectively.

Practical Bounding Using the Traversal
Diameter

In the last section, we laid down a theoretical foundation
suggesting that the traversal diameter could be successfully
used for compositional upper bounding. A schema for algo-
rithms utilising that theoretical framework to composition-
ally bound the traversal diameter of a system § is

ArB(8) = ch  Il,cus . (TRAVD(S],) + 1) 1

VS1.n€VS1..n
Above, VS;_, denotes the set of all partitions of the set of
state variables D(d), and ch denotes a function that chooses
one partition vsy ., to use for compositional bounding.

To fully specify the bounding algorithm ARB we need to
determine the choice of the partition of D(J) using which
we obtain the projections. Optimally, the function ch would
be instantiated with the function min that would choose
the partition which results in the smallest bound. However,
since the size of VS;_,, is intractable, min would be an im-
practical solution. We adopt a practically feasible approach
used by AGN2: we take the situation where D(J) models
all assignments in the SAS+ model generated using Fast-
Downward’s preprocessing step (Helmert 2006), and choose
ch to return a partition vsy_, s.t. each equivalence class in
vs1. , has elements that model all the assignments of exactly
one SAS+ state variable.

Now that we have fully specified ARB we compare it to
other bounding algorithms. We experimentally evaluate dif-
ferent bounding algorithms on problems from previous In-
ternational Planning Competitions (IPC), and the unsolv-
ablity IPC, open Qualitative Preference Rovers benchmarks
from IPC2006 (to which we refer as NEWOPEN) and the
hotel-key protocol verification problem from AGN2. Our ex-
periments were conducted on a uniform cluster with time
and memory limits of 30minutes and 8GB, respectively.

The first two columns in Table 1 show that compared to
Neum (EXP), ARB fails to compute bounds tighter than 10°
in most domains. That is because when there is branching
in the dependency graph, Ngym computes a bound that has
additive terms like the ones in Example 4, while on the other
hand, ARB always returns a bound that is the product of the
projections’ traversal diameters.

Now, recall that Theorem 5 predicts the possibility for ex-
ponential improvement in the computed bound if, instead
of EXP, we use ARB to bound a system. This suggests an-
other utilisation of ARB: to use it as a base case function
for Ngym instead of EXP. This way ARB will be only used
to bound projections which cannot be further decomposed
by Ngum, i.e. projections whose variable dependencies are
strongly connected. Indeed, using ARB as a base case func-
tion improves the computed bounds in 71% of the problems,
and the improvement is at least 50% in 66% of the cases.
The second row in Table 1 gives an overview of the improve-
ment in the bounds computed by Ngym(ARB) compared to
Nsum (EXP) for different domains. A more detailed compar-
ison is in the top plot of Figure 3.

The Traversal Diameter and State Space
Acyclicity
The construction used in the proof of Theorem 3 suggests
that the bounds computed by ARB are better than those com-
puted by EXP only if the projections of the system have
acyclicity and “branching” in their state space. In fact the
following proposition holds.

Proposition 4. If G(9) is strongly connected, then td(§) =
Exp(9).

This begs the question of whether ARB can somehow

be combined with the algorithm proposed by AGN2, which
also exploits acyclicity in the state space, to compute tighter
bounds and better system decompositions. We first review
the approach of AGN2. A critical element of their approach
is a system abstraction to which they refer as a snapshot. It
models the system when we fix the assignment of a subset
of the state variables, removing actions whose preconditions
or effects contradict that assignment.
Definition 13 (Snapshot). For states © and ', let
agree(x,2’) denote |D(xz) N D(2')| = |z Na’|, i.e. every
variable that is in the domains of both x and =’ has the same
assignment in x and x'. The snapshot of § at a state x is

54.={(p,€) | (p,€) € dNagree(p,z) Aagree(e, x)} |5y

where D(x) denotes D(0) \ D(x).

Based on snapshots, and given a system 9, a set of vari-
ables vs, and a base case function b, AGN2 defined a method
Smax () (vs, §).> That method computes the weightiest path
in the state space G(4],,), where the weight of a state x is
b(04,,). It is only defined if G(J],,) is acyclic. Combining
Smax and Ngym, AGN2 suggested Algorithm 2 as a hybrid
approach to exploit acyclicities in state spaces and depen-
dencies. In HYB, vs1_, is a partition of D(d), and ac(vs1_ )
is a member of wvs;_, s.t. the projection 5LaC(usl,,n) has a
non-trivial acyclic state space. HYB interleaves the functions
Ngum and Spax. It only calls Spax if the given system’s de-
pendencies are strongly connected and § has acyclic projec-
tions on members of vsy_,,. If both Ngym and Spax cannot
be called, HYB uses EXP as a base case function.

Algorithm 2: HYB(6, vs1..p,)

SCC := set of strongly connected components of Gps)
Gys := gD(é)/SCC
if2 < [V(Gus)|
return Ngym (HYB(®, vs1.,,)) (6, Gys)
if Jvs; = ac(vs1..n)
vs; := ac(vs1. )
return Spax (HYB(e, vs1 ,, \ {ws;}))(vs;,0)
return EXP(J)

Example 9. From Examples 1 and 2, consider the system
0 and the partition vsy ., = {vs1,vsa} of its state vari-
ables. The SCCs of the dependency graph of § are vsq

3We overload the same symbol used in Definition 12



and vso, and thus the lifted dependency graph Gys com-
puted by HYB is the one in Example 3. Accordingly, HYB
will return Ngym(HYB(®, vs1.,))(0,Gys). Then we have
that Neym(HYB(e, vs1. ))(0,Gys) = HYB; + HYBy +
HYB;HYBy, where HYB; = HYB(d|,,,,vs1.n) for i €
{1,2}. Since 6|, has the acyclic state space shown in Fig-
ure Ic we have HYBy = Smax(HYB(e, vs1))(vs2,01,,,) =
1. Since the state space of 6|, is not acyclic, HYB; =
Exp(d] = 3. Thus, HYB(0, vs1 ) = 14+3+1x3=7.

Since HYB already exploits state space acyclicity using
Smax, the main question now is whether using ARB as a
base case function for HYB instead of EXP can improve the
computed bounds. The short answer to that question is: yes,
bounds computed by HYB using ARB as a base case func-
tion are better in 68% of the problems compared to those
computed with EXP as a base case, and the improvement is
at least 50% in 71% of the cases. The third column of Ta-
ble 1 and the bottom plot of Figure 3 show a fine-grained
comparison between the bounds.

To understand the improvement in the computed bounds,
recall that if the dependency graph has one SCC, HYB will
pick one ws; from wvsy. ,, s.t. the state space of (5[1}31, is
acyclic. Then HYB uses Spax to decompose ¢ into multi-
ple abstractions: the projection 61,,. and the snapshots of §
on the different states in U(§). Then Spax calls HYB recur-
sively on each of the snapshots of §, with vs; removed from
vs1. . This is repeated until the state space of the projection
on each remaining member of wsy_, is not acyclic. Then
the base case function is called to bound the projection on
the remaining members of vs; . ,,. However, as shown in the
next example, if a projection’s state space is not acyclic, its
traversal diameter can still be much tighter than the size of
its state space. This will lead to much tighter bounds com-
puted by HYB if it uses ARB as a base case function instead
of EXP.

vsl)

Example 10. Consider the computation in Example 9.
If ARB is used as a base case function, HYB; =
ARB(6],s,,v51.n) = TRAVD(d|,,,) = 2 (for the
evaluation of TRAVD(4|,, ) see Example 7). Thus
HYB(0,vs1. ) =1+2+1x2=05.

Using the Bounds To Compute Plans AGN?2 showed that
when the bounds computed by HYB, with EXP as a base
case function, are used as a horizon for the SAT-based plan-
ner Madagascar MP (Rintanen 2012), the coverage of MP
substantially increased. Indeed, it solved satisfiable and un-
satisfiable planning problems that other state-of-the-art plan-
ners could not solve. We now study the improvement in the
coverage of MP if we use as horizons the bounds computed
by HYB when ARB is the base case. Compared to using
EXP as a base case, ARB increases the coverage by 234 for
solvable problems. Those problems come from the domains:
NEWOPEN (221 problems), ROVER (7 problems), SATEL-
LITE (5 problems), and TPP (1 problem). Also, using ARB
as a base case for HYB allows MP to prove the unsolvability
of an additional 4 problems from the domain NEWOPEN and
52 problems from the domain HOTELKEY, that it could not
solve when EXP is used as a base case function.
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Figure 3: Top (resp. bot.): bounds computed by Ngym (resp.
HyB) when EXP (vert.) is base case function vs ARB (hor.).

Conclusions and Future Work

We contributed a novel compositional upper bounding ap-
proach in planning. Our technique exposes problems with
a relatively wide variety of dependency structures to upper
bounding. Previous approaches only apply to a limited class
of problems that have a branching 1-way state variable de-
pendency structure. Our analysis treats a much broader class
of problems, with 2-way dependencies. Our new approach,
however, is most useful when combined with other existing
compositional bounding techniques, where it leads to sub-
stantial improvement in the computed bounds. We use it to
decompose problem abstractions produced using the other
compositional bounding techniques when those abstractions
have bidirectional dependencies.

An open problem is to devise a method to practically de-
compose large concrete problems with strongly connected
dependencies instead of only small abstractions produced by
other compositional algorithms. Also, investigating the ef-
fect of the partition of the state variables used to decompose
problems on the value of computed bounds is an interesting
avenue for future research.
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Domain(#inst.) ARB Nsum HYB
newopen(1440) 0 460 | 1107 459 | O 1439| 1440 1294 491
hotelKey(1000) 87 518 | 524 | 412 | 412 | 1000[ 1000[ 899 | 899
logistics(407) 51 407 | 407 | 406 | 365 | 407 | 407 | 406 | 365
elevators(210) 67 162 | 163 | 162 | 162 | 162 | 163 | 162 | 162
rover(182) 28 106 | 119 | 65 2 176 | 177 | 92 6
nomystery(124) 28 124 | 124 | 124 | 51 124 | 124 | 124 | 124
zeno(50) 17 50 50 50 50 50 50 50 50
hiking(40) 20 20 20 20 20 27 26 20 20
TPP(120) 11 53 55 22 21 107 108 19 19
Transport(197) 9 44 43 13 13 45 44 13 13
GED(40) 5 5 5 5 5 5 5 5 5
visitall(90) 16 36 36 16 16 36 36 16 16
bottleneck(50) 6 6 6 6 6 50 50 0 0
openstacks(131) 8 28 28 8 8 116 | 116 | 6 6
3unsat(30) 5 5 5 5 5 30 30 0 0
tiles(45) 23 23 23 23 23 23 23 23 23
satellite(10) 10 10 10 10 8 10 10 10 8
hyp(286) 1 187 | 187 | 23 23 285 | 285 | 33 33
scanalyzer(60) 3 10 10 3 3 10 10 3 3
sliding(25) 13 13 13 13 13 13 13 13 13
gripper(54) 7 39 39 7 7 39 39 7 7
storage(30) 7 7 7 7 7 7 7 7 7
trucks(34) 2 6 6 4 4 7 7 5 5
parcprinter(60) 0 23 23 3 3 27 27 3 3
pipesworld(101) 2 53 53 2 2 55 53 2 2
pegsol(133) 2 3 3 2 2 3 3 2 2

Table 1: Col. 1: the domain name and the number of
problems in it. Col. 2: the number of problems for which
ARB computed a bound less than 10°. Col. 3 (resp. 4) has
four numbers: (i) problems for which Ngym(EXP) (resp.
HYB(EXP)) computed a bound less than 10° (ii) prob-
lems for which Ngym(ARB) (resp. HYB(ARB)) computed
a bound less than 10° (iii) problems for which the bound
by Nsum (ARB) (resp. HYB(ARB)) is less than the bound by
Nsum(EXP) (resp. HYB(EXP)) (iv) problems for which the
bound by Ngym(ARB) (resp. HYB(ARB)) is less than half
the bound by Ngym (EXP) (resp. HYB(EXP)).
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