
Plan-Length Bounds: Beyond 1-way Dependency

Mohammad Abdulaziz
Technical University of Munich, Munich, Germany

Abstract

We consider the problem of compositionally computing up-
per bounds on lengths of plans. Following existing work, our
approach is based on a decomposition of state-variable de-
pendency graphs (a.k.a. causal graphs). Tight bounds have
been demonstrated previously for problems where key de-
pendencies flow in a single direction—i.e. manipulating vari-
able v1 can disturb the ability to manipulate v2 and not vice
versa. We develop a more general bounding approach which
allows us to compute useful bounds where dependency flows
in both directions. Our approach is practically most useful
when combined with earlier approaches, where the computed
bounds are substantially improved in a relatively broad vari-
ety of problems. When combined with an existing planning
procedure, the improved bounds yield coverage improve-
ments for both solvable and unsolvable planning problems.

Introduction
Many techniques for solving reachability problems in tran-
sition systems, like SAT-based planning (Kautz and Selman
1992) and bounded model checking (Biere et al. 1999), ben-
efit from knowledge of upper bounds on the lengths of tran-
sition sequences, aka completeness thresholds. IfN is such a
bound, and if a transition sequence achieving the goal exists,
then that sequence need not comprise more than N actions.

Biere et al. (1999) identify the diameter and the re-
currence diameter, which are topological properties of the
state space, as conceptually appealing upper bounds. The
diameter is the longest shortest path between any two
states. The recurrence diameter is the longest simple path
in the state space, i.e. the longest path that does not tra-
verse any state more than once. Approximate and exact
algorithms have been developed to calculate both proper-
ties given an explicit (e.g. tabular) representation of the
transition system. Exact algorithms to compute the diam-
eter have worse than quadratic runtimes in the number
of states (Fredman 1976; Alon, Galil, and Margalit 1997;
Chan 2010; Yuster 2010), and approximation approaches
have super-linear runtimes (Aingworth et al. 1999; Roditty
and Vassilevska Williams 2013; Chechik et al. 2014; Ab-
boud, Williams, and Wang 2016). The situation is even
worse for the recurrence diameter, whose computation is

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

NP-Hard (Pardalos and Migdalas 2004). The impractical-
ity of those explicit algorithms is exacerbated in settings
where systems are described using factored representations,
like planning and model-checking, since a system’s explicit
representation can be exponential in the size of the corre-
sponding factored problem description.

However, compositional approaches to calculate bounds
for problems described using factored representations are
feasible. The concrete system’s (recurrence) diameter is
bounded by composing together bounds for abstract subsys-
tems. The subsystems are projections of the concrete sys-
tem. The motivation for compositional approaches is that
they provide useful approximations of plan bounds using
smaller computational effort, since only explicit representa-
tions of abstract subsystems have to be constructed. Baum-
gartner, Kuehlmann, and Abraham (2002) and Rintanen and
Gretton (2013) followed this projection-based approach to
develop procedures to compositionally bound the diameter.
This was later improved by Abdulaziz, Gretton, and Nor-
rish (2015) and Abdulaziz, Gretton, and Norrish (2017) (we
refer to those two papers as AGN1 and AGN2 hereafter).

A common drawback with previous approaches, how-
ever, is that they are only usefully applicable if the pro-
jections are induced by acyclicity in the causal/dependency
graph (Williams and Nayak 1997; Knoblock 1994). Thus it
is an open question as to whether there are practically useful
ways to upper-bound plan lengths using projections not re-
sulting from dependency graphs with acyclicity. We address
this question by developing a compositional bounding pro-
cedure which is applicable to arbitrary projections. We do
so by defining a new topological property for the state space
to which we refer as the traversal diameter. The distinctive
feature of the traversal diameter is that, for any given fac-
tored transition system, the traversal diameter of that system
is upper bounded by the product of the traversal diameters
of projections of that system. Those projections can be ob-
tained using any partition of the system’s state variables, i.e.
the restriction of having acyclic dependencies is not required
for this compositional bound.

Using the traversal diameter based compositional method
to bound concrete problems is not very practically useful
since it uses the product of all the projections’ traversal di-
ameters as the bound. However, the utility of this new pro-
cedure is most pronounced when combined with previous



state-of-the-art algorithms from AGN1 and AGN2. We use
the traversal diameter based method to further decompose
“atomic sub-problems”, which are abstractions that cannot
be further abstracted by the algorithms from AGN1 and
AGN2. We experimentally show that this additional decom-
position improves the bounds computed by the algorithms
from AGN1 and AGN2. For instance, bounds computed us-
ing the method from AGN2 improved in 68% of the planning
problems on which we experimented, with an improvement
of at least 50% in 71% of the cases.

We also use the bounds computed by the new algorithm as
horizons for the SAT-based planner Madagascar MP (Rinta-
nen 2012). This improves the coverage of MP in both solv-
able and unsolvable planning instances compared to the de-
fault query strategies or to upper bounds computed by all
previous algorithms as horizons.

Background and Notations
Compositional bounds are defined on factored transition
systems which are purely characterised in terms of a set of
actions. From actions we can define a set of valid states, and
then approach bounds by considering properties of execu-
tions of actions on valid states. Whereas conventional expo-
sitions in the planning and model-checking literature would
also define initial conditions and goal/safety criteria, here
we omit those features from discussion since the notion of
diameter and other bounds are independent of those features.

Definition 1 (States and Actions). A maplet, v 7→ b, maps
a variable v—i.e. a state-characterising proposition—to a
Boolean b. A state, x, is a finite set of maplets. We writeD(x)
to denote {v | (v 7→ b) ∈ x}, the domain of x. For states
x1 and x2, the union, x1 ] x2, is defined as {v 7→ b | v ∈
D(x1) ∪ D(x2) ∧ if v ∈ D(x1) then b = x1(v) else b =
x2(v)}. Note that the state x1 takes precedence. An action
is a pair of states, (p, e), where p represents the precondi-
tions and e represents the effects. For action π = (p, e), the
domain of that action is D(π) ≡ D(p) ∪ D(e).
Definition 2 (Execution). When an action π (= (p, e)) is
executed at state x, it produces a successor state π(x), for-
mally defined as π(x) = if p * x then x else e ] x. We
lift execution to lists of actions

→
π , so

→
π (x) denotes the state

resulting from successively applying each action from
→
π in

turn, starting at x.

We give examples of states and actions using sets of lit-
erals. For example, {a, b} is a state where state variables
a is (maps to) true, b is false, and its domain is {a, b}.
({a, b}, {c}) is an action that if executed in a state that has a
and b, it sets c to true. D(({a, b}, {c})) = {a, b, c}.
Definition 3 (Factored Transition System). A set of actions
δ constitutes a factored transition system. D(δ) denotes the
domain of δ, which is the union of the domains of all the
actions it contains. Let set(

→
π ) be the set of elements from

→
π .

The set of valid action sequences, δ∗, is {→π | set(
→
π ) ⊆ δ}.

The set of valid states, U(δ), is {x | D(x) = D(δ)}. G(δ)
denotes the state space of δ, i.e. the digraph whose vertices
are U(δ) and edges are {(x, π(x)) | x ∈ U(δ), π ∈ δ}.

v1v2v3v4

v1v2v3v4

v1v2v3v4

v1v2v3v4

v1v2v3v4

v1v2v3v4

v1v2v3v4

(a)

v1v2 v1v2

v1v2

v1v2

(b)

v3v4

v3v4

v3v4

v3v4

(c)

v1 v2

v3 v4

(d)

vs1

vs2

(e)

{v1v2, v1v2}
{v1v2}

{v1v2}

(f)

Figure 1: a) is the largest connected component of the state
space of δ in Example 1. b) and c) are the state spaces of the
projections of δ on {v1, v2} and {v3, v4}. d) is the depen-
dency graph GD(δ) of δ and e) is a lifted dependency graph
GVS for δ. f) is a quotient of the state space of δ�vs1 .

Example 1. Consider the factored representation, δ =
{π1 = ({v1, v2}, {v2}), π2 = ({v1, v2}, {v2}), π3 = ({v1,
v2}, {v1, v2}), π4 = ({v1, v2}, {v1}), π5 = ({v1, v2, v3,
v4}, {v4}), π6 = ({v1, v2, v3, v4}, {v3}), π7 = ({v1, v2,
v3, v4}, {v3, v4})}. The digraph in Figure 1a represents the
largest connected component in the state space of δ, where
different states defined on the variables D(δ) = {v1, v2 v3,
v4} are shown. Interpreting δ as a transition system, it
has two “modes” of operation. The first mode changes
the assignments of {v1, v2} and is represented by actions
{π1 · · ·π4}. The second mode, represented by actions {π5,
π6, π7}, changes the assignments of {v3, v4} and is only en-
abled if {v1, v2} are both set to true.

Compositional Bounding
For a system δ, a bound on the length of action sequences
is EXP(δ) = 2|D(δ)| − 1 (i.e. one less than the size of the
state space), where | • | denotes the cardinality of a set or
the length of a list. Other bounds employed by previous ap-
proaches are topological properties of the state space like the
diameter, suggested by Biere et al. 1999.

Definition 4 (Diameter). The diameter, written d(δ), is the
length of the longest shortest action sequence, formally

d(δ) = max
x∈U(δ),→π∈δ∗

min
→
π (x)=

→
π
′
(x),
→
π
′
∈δ∗
|→π
′
|

Note that if there is a valid action sequence between any
two states, then there is a valid action sequence between
them which is no longer than the diameter. Another topo-
logical property suggested by Biere et al. 1999 as a suitable
upper bound is the recurrence diameter.

Definition 5 (Recurrence Diameter). Let distinct(x,
→
π ) de-

note that all states traversed by executing
→
π at x are distinct

states. The recurrence diameter is the length of the longest
simple path in the state space, formally

rd(δ) = max
x∈U(δ),→π∈δ∗,distinct(x,

→
π )

|→π |



Choosing a topological property as an upper bound de-
pends on many factors. Size: for a system δ, d(δ) can be
exponentially smaller than rd(δ), which in turn can be expo-
nentially smaller than EXP(δ) (Biere et al. 1999). Complex-
ity: computing EXP(δ) is the easiest since it can be done in
a time linear in |D(δ)|, while the diameter can be computed
in time at least quadratic in the size of the state space (Ab-
boud, Williams, and Wang 2016), and the recurrence diam-
eter is the hardest as it is NP-Hard in the size of the state
space (Pardalos and Migdalas 2004). Usability: the diame-
ter is a completeness threshold for SAT-based AI planning
and bounded model checking of safety formulae, while the
recurrence diameter is a completeness threshold for bounded
model checking of fairness formulae (Biere et al. 1999).

In this work, the most relevant trait of a topological prop-
erty is the ability to compositionally bound it. By that we
mean computing an upper bound on the topological prop-
erty of a given system by composing topological properties
of abstractions of that system. A key abstraction concept for
compositional reasoning about transition systems is projec-
tion, which is defined as follows.
Definition 6 (Projection). Projecting an object (a state x,
an action π, a sequence of actions

→
π or a factored represen-

tation δ) on a set of variables vs restricts the domain of the
object or the components of composite objects to vs . Pro-
jection is denoted as x�vs , π�vs ,

→
π �vs and δ�vs for a state,

action, action sequence and factored representation, respec-
tively. However, for action sequences or transition systems,
an action with no effects after projection is dropped entirely.
Example 2. Let vs1 = {v1, v2} and vs2 = {v3, v4}. A par-
tition of the domain of δ from Example 1 is {vs1, vs2}. The
projection δ�vs2 = {π5�vs2 = ({v3, v4}, {v4}), π6�vs2 =
({v3, v4}, {v3}), π7�vs2 = ({v3, v4}, {v3, v4})}. The vari-
ables {v1, v2} were removed from action preconditions and
effects, and actions with empty effects were removed. Fig-
ures 1b and 1c show the state spaces of the projections δ�vs1
and δ�vs2 .

Compositional techniques that use projection bound a
topological property of a system δ by topological proper-
ties of a set of projections of δ. Those projections are done
on a partition vs1..n of the set of state variables D(δ). For
instance, for any vs1..n, EXP(δ) is equal to (and accord-
ingly bounded by) Πvs∈vs1..n(EXP(δ�vs) + 1) − 1, i.e. the
product of the state space sizes of such a set of projec-
tions. In contrast to EXP, the (recurrence) diameter can-
not generally be bounded by the (recurrence) diameters of
projections (Abdulaziz 2017, Chapter 3, Theorems 1 and
2). However, if there are acyclicities in variable depen-
dencies, there are methods that compose the recurrence di-
ameters of projections to bound on the concrete system’s
diameter (Baumgartner, Kuehlmann, and Abraham 2002;
Rintanen and Gretton 2013). We now review variable depen-
dency and the most recent of those methods from AGN1.

Acyclicity in variable dependency has been exploited in
previous research by reasoning about the dependency/causal
graph (Williams and Nayak 1997; Knoblock 1994). We for-
mally describe that graph, reviewing precisely what is meant
by dependency.

Definition 7 (Dependency). A variable v2 is dependent on
v1 in δ (written v1→v2) iff one of the following statements
holds: (i) v1 = v2, (ii) there is (p, e) ∈ δ such that
v1 ∈ D(p) and v2 ∈ D(e), or (iii) there is a (p, e) ∈ δ such
that both v1 and v2 are in D(e). A set of variables vs2 is de-
pendent on vs1 in δ (written vs1→vs2) iff: (i) vs1∩vs2 = ∅,
and (ii) there are v1 ∈ vs1 and v2 ∈ vs2, where v1→v2.

Definition 8 (Digraph Quotient). For a digraph G, and a
partition P of its vertices V (G), the quotient G/P of G is
the digraph with a vertex for each u ∈ P . G/P has an edge
between any us1, us2 ∈ P iff G has an edge between any
u1 ∈ us1 and u2 ∈ us2.

Definition 9 (Dependency Graph). GD(δ) is a dependency
graph of δ, if D(δ) are its vertices and {(u1, u2) | u1→u2 ∧
u1, u2 ∈ D(δ)} are its edges. A quotient, GVS, of GD(δ) on a
partition vs1..n of D(δ) is a lifted dependency graph.

Example 3. Figure 1d shows the dependency graph GD(δ)

of δ from Example 1, where self-loops are omitted. Figure 1e
has a lifted dependency graph GVS of δ which is the quotient
GD(δ)/{vs1, vs2} .

AGN1used the compositional bounding function Nsum,
defined via the recurrence below. δ is the system of inter-
est, GVS is a lifted dependency graph of δ used to iden-
tify abstract subproblems, and childGVS(vs) denotes the set
of children of a set of varaibles vs in GVS, {vs2 | vs2 ∈
V (GVS)∧vs→vs2}. The functional parameter b bounds pro-
jections and we refer to it as the base case function.

Definition 10 (Acyclic Dependency Compositional Bound).

N〈b〉(vs, δ,GVS) = b(δ�vs)(1+
∑

c∈childGVS (vs)

N〈b〉(c, δ,GVS))

Then, let Nsum〈b〉(δ,GVS) =
∑

vs∈GVS N〈b〉(vs, δ,GVS).

Theorem 1. For any δ with an acyclic lifted dependency
graph GVS, d(δ) ≤ Nsum〈rd〉(δ,GVS).
Example 4. Consider GVS from Figure 1e, and the base case
function b. Let Ni denote N〈b〉(vsi, δ,GVS) and bi denote
b(δ�vsi). We have (i) N2 = b2, (ii) N1 = b1 + b1b2, and
(iii) Nsum〈b〉(δ,GVS) = b1 + b2 + b1b2.

Since previous methods only apply to dependencies with
acyclicity, it is an open question as to whether there is a com-
positional bound on plan lengths better than EXP(δ) for pro-
jections not induced by acyclic lifted dependency graphs. In
this work we provide a positive answer to that question.

The Traversal Diameter
The traversal diameter is one less than the largest number of
states that could be traversed by any path.

Definition 11 (Traversal Diameter). Let ss(x,
→
π ) be the set

of states traversed by executing
→
π at x. The traversal diam-

eter is

td(δ) = max
x∈U(δ),→π∈δ∗

|ss(x,
→
π )| − 1.



Intuitively, the traversal diameter is a version of the diam-
eter that instead of selecting shortest action sequences that
reach the same final destination, it selects shortest action se-
quences that traverse the same states en route to the desti-
nation. It should also be clear that the traversal diameter is
upper bounded by the state space size.

Example 5. For δ�vs1 from Example 2 whose state space is
shown in Figure 1b, the traversal diameter is 2.

The most appealing feature of the traversal diameter is
that it is an upper bound on the recurrence diameter (and ac-
cordingly the diameter) that can be compositionally bounded
with projections from arbitrary partitions of the state vari-
ables. In other words, unlike other topological properties, it
avoids any conditions on the dependencies between the pro-
jections used for bounding, as shown in the theorem below.

Theorem 2. For a factored representation δ and a partition
vs1..n of D(δ), td(δ) ≤Πvs∈vs1..n(td(δ�vs) + 1)− 1.

To prove Theorem 2 we begin by stating the following
propositions.

Proposition 1. For a number k, if for every x ∈ U(δ) and
→
π ∈ δ∗, |ss(x,

→
π )| ≤ k + 1, then td(δ) ≤ k.

Proposition 2. For a set of states S, let S�vs denote {x�vs |
x ∈ S}. Let sat-pre(x,

→
π ) denote that preconditions of ev-

ery action in
→
π are satisfied, if

→
π is executed from x. If

sat-pre(x,
→
π ), then ss(x,

→
π )�vs = ss(s�vs ,

→
π �vs).

Proposition 3. For any partition vs1..n of D(δ),
|ss(x,

→
π )| ≤Πvs∈vs1..n |ss(x,

→
π )�vs |.

Perhaps Proposition 3 is the least obvious. Its intuitive
meaning is that a set of states is a subset of the cartesian
product of its own projections, given that the projection is
on a partition of the state variables.

Proof of Theorem 2. Consider x ∈ U(δ) and without loss
of generality, an action sequence

→
π ∈ δ∗ such that

sat-pre(x,
→
π ). From Definition 11, for any vs , x�vs ∈

U(δ�vs) and
→
π �vs ∈ δ�vs

∗, we have |ss(x�vs ,
→
π �vs)| −

1 ≤ td(δ�vs). Theorem 2 then follows from Proposition 2,
Proposition 3 and Proposition 1.

Optimality of the Compositional Bound
The bound in Theorem 2 is optimal in the following sense:
any sound compositional bounding function that takes as in-
put (i) projections’ traversal diameters and (ii) the depen-
dencies between the projections, will produce a bound that
is no less than the bound specified in Theorem 2. In other
words this bound cannot be improved except by exploiting
more structure than that of the variable dependencies.

Since the optimality theorem quantifies over “composi-
tional bounding functions”, we first need to discuss how we
formulate such functions. One notion we need to introduce
is that of labelled digraphs, which are digraphs whose ver-
tices have labels. For example, a lifted dependency graph
is a graph whose vertices are labelled by sets of state vari-
ables. For a labelled digraph Gα and a vertex u, the label of

u is denoted by Gα(u). Also, we define and image opera-
tion for labelled digraphs that effectively changes the vertex
labels. In particular, the image hLGαM of the function h on
the labelled digraph Gα is a graph that has the same ver-
tices and edges as Gα, but with the label of every vertex u
changed from Gα(u) to h(Gα(u)). In this setting, one can
see the lifted dependency graph as a labelled digraph whose
vertices are labelled each with a set of state variables.

A compositional bounding function f is a function that
takes the projections’ traversal diameters and the dependen-
cies between the projections and returns an upper bound on
the traversal diameter of the entire system. As arguments to
f , projections’ traversal diameters and their dependencies
are encoded as a labelled digraph, GN, in which every vertex
is labelled by a natural number. This digraph has one vertex
per projection and every edge represents a dependency be-
tween two projections. Every vertex is labelled by a natural
number that is the traversal diameter of the corresponding
projection.
Theorem 3. For any digraph, GN, with natural num-
ber labels, there is a factored system δ such that:
(i) Πu∈V (GN)(GN(u) + 1) − 1 ≤ td(δ), and (ii) there is a
lifted dependency graph GVS for δ, such that GN = TLGVSM,
where T(vs) = td(δ�vs).

The proof is made of three main steps. Firstly, for each
given projection traversal diameter m (i.e. m is a label of a
vertex u ∈ V (GN)) we construct a factored system 4u with
traversal diameter m. Those systems are constructed such
that: i) their union is a system with a traversal diameter more
than f(GN), and ii) they are projections of the final construc-
tion δ. Secondly, for every dependency from projection 4u1

to 4u2 (i.e. an edge in GN), we construct an action that has
preconditions from 4u1 and effects from 4u2 . Those actions
are supposed to not change the state space of the final con-
struction, they only add dependencies corresponding to the
edges in GN. Thirdly, we show that the union of the con-
structed projections and the dependency inducing actions is
the required witness δ, i.e. its diameter exceeds f(GN). Be-
fore we start the proof, for system δ and states x, y ∈ U(δ),
let x y denote that there is a

→
π ∈ δ∗ such that

→
π (x) = y.

Proof. For u ∈ V (GN), let 4u denote the factored system
(i.e. set of actions) {(xu0 , xui ) | 1 ≤ i ≤ GN(u)}∪{(xu0 , xui ) |
1 ≤ i ≤ GN(u)}. For instance, if for a vertex u, GN(u) =
3, the state space of 4u will look like the one depicted in
Figure 2c. Also construct those systems s.t. for u1 6= u2 we
have D(4u1) ∩ D(4u2) = ∅.

Fix some u ∈ V (GN). Let S(4u) denote the largest con-
nected component in the state space of 4u, which is unique.
xui  xuj holds for any xui , x

u
j ∈ S(4

u
), thus td(4u) =

|S(4u)| − 1 = GN(u).†
Let δ = {(xu1

0 ] x
u2
0 , xu2

1 ) | (u1, u2) ∈ E(GN)} ∪⋃
u∈V (GN) 4

u. We now show that δ satisfies requirement (i).
Again, let S(δ) denote the largest connected component
in the state space of δ, which is unique. Since xui  xuj
holds for any xui , x

u
j ∈ S(4

u
), then x  y holds for any

x, y ∈ S(δ), and therefore there is a path that traverses ev-
ery member of S(δ). Since for u1 6= u2 we have D(4u1) ∩



D(4u2) = ∅, we have |S(δ)| = Πu∈V (GN)|S(4
u
)|. Since

from †we haveΠu∈V (GN)|S(4
u
)| =Πu∈V (GN)(GN(u)+1),

then Πu∈V (GN)(GN(u) + 1)− 1 ≤ td(δ).
To show that δ satisfies requirement (ii), consider a rela-

belling, GVS, of GN, where every vertex u is relabelled by the
domain of the system 4u. Recall that δ had the set of actions
{(xu1

0 ] x
u2
0 , xu2

1 ) | (u1, u2) ∈ E(GN)} as a subset. These
actions are constructed such that they add dependency from
D(4u1) to D(4u2) in δ iff (u1, u2) ∈ E(GN). Accordingly
edges of GVS represent the dependencies of δ and accord-
ingly it is a lifted dependency graph of δ. Also since, for
u ∈ V (GN), δ�D(4u) = 4u, and by construction GN is a rela-
belling of GVS, and from † we have GN = TLGVSM.

2

3 2

(a)

{v1, v2}

{v3, v4} {v5, v6}

(b)

x
u2
0x

u2
1 x

u2
2

x
u2
3

(c)
x
u3
0 x

u3
1x

u3
2

(d)

x
u1
0 x

u1
1x

u1
2

(e)

(f)

Figure 2: Referring to Example 6, (a) is a natural number
labelled graph. (b) a lifted dependency graph of the factored
system δ from Example 6. (c), (d), (e) are the largest con-
nected components in the state spaces of the systems 4u2 ,
4u3 and 4u1 , respectively. (f) is the largest connected compo-
nent in the state space of δ.

Example 6. This is an example of the construction from
Theorem 3, for the natural number labelled digraph GN in
Figure 2a. In GN there are three vertices u1 (the root), u2,
and u3, labelled by the numbers 2, 3, and 2, respectively. We
construct three systems, one per vertex, shown in Figures 2c-
2e. For u2 the constructed system is 4u2 = {(xu2

0 , xu2
1 ),

(xu2
0 , xu2

2 ), (xu2
0 , xu2

3 ), (xu2
1 , xu2

0 ), (xu2
2 , xu2

0 ), (xu2
3 , xu2

0 )}.
The states are defined as xu2

0 = {v3, v4}, xu2
1 = {v3, v4},

xu2
2 = {v3, v4}, xu2

3 = {v3, v4}. For u3 the constructed
system is 4u3 = {(xu3

0 , xu3
1 ), (xu3

0 , xu3
2 ), (xu3

1 , xu3
0 ), (xu3

2 ,
xu3
0 )}. The states are defined as xu3

0 = {v5, v4}, xu3
1 = {v5,

v4} and xu3
2 = {v5, v4}. For u1 the constructed system is

4u1 = {(xu1
0 , xu1

1 ), (xu1
0 , xu1

2 ), (xu1
1 , xu1

0 ), (xu1
2 , xu1

0 )}. The
states are defined as xu1

0 = {v1, v2}, xu1
1 = {v1, v2}, and

xu1
2 = {v1, v2}. For any xu1

i , x
u1
j ∈ S(4u1), xu1

i  xu1
j

holds and accordingly td(4u1) = 2. Similarly, td(4u2) = 3
and td(4u3) = 2.

The required witness is δ = {(xu1
0 ]x

u2
0 , xu2

1 ), (xu1
0 ]x

u3
0 ,

xu3
1 )} ∪ 4u1 ∪ 4u2 ∪ 4u3 , where the actions {(xu1

0 ] x
u2
0 ,

xu2
1 ), (xu1

0 ] x
u3
0 , xu3

1 )} add to δ dependencies equivalent
to the edges of GN, i.e. the dependencies shown in Fig-
ure 2b. Also, in the constructed witness, for all states x0,
x1 ∈ S(δ) (shown in Figure 2f) x0  x1 holds, and ac-
cordingly td(δ) = 35.

Computing the Traversal Diameter
An important aspect of td is that, unlike the diameter or the
recurrence diameter, it can be computed in linear time us-
ing Algorithm 1. A principal component of computing the
traversal diameter is an algorithm to compute the weight of
the “weightiest” path in acyclic digraphs, where vertices are
assigned numerical weights. The weight of a path is the sum
of weights of all the vertices that it traverses added to the
number of edges comprising it. The weightiest path is com-
puted using the recurrence Smax.

Definition 12 (Weighted Longest Path). For a digraph G,
let the function b : V (G) ⇒ N be a function that assigns a
natural number for every vertex in V (G). S is

S〈b〉(u,G) = b(u) + max
u′∈childG(u)

(S〈b〉(u′,G) + 1)

Then, let Smax〈b〉(G) = max
u∈V (G)

S〈b〉(u,G).

Smax is only well-defined if G is acyclic. The runtime of
Smax is linear in the size of V (G), if the values of S for dif-
ferent vertices are memoised and assuming that b is at most
of linear complexity. Accordingly if we use Tarjan’s (Tarjan
1972) algorithm to compute the strongly connected compo-
nents, the runtime of Algorithm 1 would be linear in the size
of the state space of the given system.

Algorithm 1: TRAVD(δ)

SCC := set of strongly connected components of G(δ)
return Smax〈C〉(G(δ)/SCC), where C(s) = |s| − 1

Theorem 4. TRAVD(δ) = td(δ).



Proof. For notational brevity, let G = G(δ)/SCC, and for a
strongly connected component scc, S(scc) = S〈C〉(scc,G)
and child(scc) = childG(scc). Since G is a DAG, its vertices
can be topologically ordered in a list lSCC .

Firstly, we prove TRAVD(δ) ≤ td(δ). We show that for
any strongly connected component scc ∈ G there is an ac-
tion sequence

→
π scc ∈ δ∗ and a state xscc ∈ scc, such that

S(scc) ≤ |ss(xscc,
→
π scc)| − 1, which from Definitions 11

and 12, implies TRAVD(δ) ≤ td(δ). We prove this by in-
duction on lSCC . The base case, lSCC = [], is straightfor-
ward. For the step case lSCC = scc :: l′SCC ,1 and for any
scc′ ∈ l′SCC , there is a state x′ ∈ scc′ and an action se-

quence
→
π
′
∈ δ∗ where S(scc′) ≤ |ss(x′,

→
π
′
)| − 1. Since

scc is a strongly connected component of states in G(δ), then
there is

→
π
′
scc ∈ δ∗ and a state xscc ∈ scc, where

→
π scc tra-

verses exactly all the states in scc, if executed at xscc ∈ scc,
i.e. ss(xscc,

→
π
′
scc) = scc. We have two cases:

Case 1 (child(scc) = ∅). From Definition 12, S(scc) =

|scc|− 1 = |ss(xscc,
→
π
′
scc)|− 1 holds for this case. Accord-

ingly the required witness
→
π scc is the same as

→
π
′
scc.

Case 2 (child(scc) 6= ∅). Let sccmax be a strongly con-
nected component where ∀ scc′ ∈ child(scc). S(scc′) ≤
S(sccmax). Because sccmax ∈ child(scc) we have sccmax ∈
l′SCC , and accordingly from the inductive hypothesis there
are xmax ∈ sccmax and

→
πmax ∈ δ∗ such that S(sccmax) ≤

|ss(xmax,
→
πmax)| − 1.(†) Also, because sccmax ∈ child(scc)

and since both scc and sccmax are strongly connected com-
ponents, there must be

→
π
′
∈ δ∗, where

→
π
′
scc_

→
π
′
(xscc) =

xmax.2 We now show that
→
π scc =

→
π
′
scc_

→
π
′
_
→
πmax

is the required witness. First, it is easy to see that
ss(xscc,

→
π
′
scc) ∪ ss(xmax,

→
πmax) ⊆ ss(xscc,

→
π scc). Since

sccmax ∈ child(scc), then ss(xmax,
→
πmax) is disjoint with

scc. Accordingly |ss(xscc,
→
π
′
scc)| + |ss(xmax,

→
πmax)| ≤

|ss(xscc,
→
π scc)|. From this, (†), and Definition 12 we have

S(scc) ≤ |ss(xscc,
→
π scc)| − 1.

Secondly, we prove td(δ) ≤ TRAVD(δ) by showing that
for any scc ∈ G, xscc ∈ scc, and

→
π scc ∈ δ∗, we have

|ss(xscc,
→
π scc)| − 1 ≤ S(scc). Our proof is again by in-

duction on the list lSCC . The base case, lSCC = [], is
straightforward. The step case lSCC = scc :: l′SCC , and

we have that for any scc′ ∈ l′SCC , x′ ∈ scc′, and
→
π
′
∈ δ∗,

|ss(x′,
→
π
′
)| − 1 ≤ S(scc′) holds. We have two cases:

Case 1 (ss(xscc,
→
π scc) ⊆ scc). Since ss(xscc,

→
π scc) ⊆ scc

then |ss(xscc,
→
π )| ≤ |scc|. From Definition 12, we know

that |scc|− 1 ≤ S(scc), and accordingly |ss(xscc,
→
π scc)|−

1 ≤ S(scc).

1For a list l, h :: l is l with the element h appended to its front.
2For two lists l1 and l2, l1_l2 denotes their concatenation.

Case 2 ( ss(xscc,
→
π scc) 6⊆ scc). Since ss(xscc,

→
π scc) 6⊆

scc, then there are
→
π scc, π, and

→
π child such that:

(i)
→
π scc =

→
π
′
scc_π ::

→
π child, (ii) ss(xscc,

→
π
′
scc) ⊆ scc,

and (iii) letting xchild = π(
→
π
′
scc(xscc)), xchild ∈ sccchild

holds, for some sccchild ∈ child(scc). Using the same argu-
ment as the last case, we have |ss(xscc,

→
π
′
scc)| ≤ |scc|.(*)

Since xchild ∈ sccchild, and from the inductive hypothesis,
we have that |ss(xchild,

→
π child)| − 1 ≤ S(sccchild). Then us-

ing (*) and since ss(xchild,
→
π child) and scc are disjoint, we

have |ss(xscc,
→
π scc)| − 1 ≤ |scc|+ S(sccchild). From Defi-

nition 12, we have |scc|+S(sccchild) ≤ S(scc) and accord-
ingly |ss(xscc,

→
π scc)| − 1 ≤ S(scc).

Example 7. Consider the projection δ�vs1 of δ from
Example 2 as input to Algorithm 1. The first step
in Algorithm 1 is to compute the SCCs of the state
space G(δ). G(δ) is shown in Figure 1b, and it has
three strongly connected components, thus SCC :=
{{v1v2, v1v2}, {v1v2}, {v1v2}}. Those connected compo-
nents induce the quotient of the state space shown in Fig-
ure 1f. Next, the algorithm computes Smax〈C〉(G(δ)/SCC).
We have S〈C〉({v1v2}) = C({v1v2}) = 0, and
S〈C〉({v1v2}) = C({v1v2}) = 0. S〈C〉({v1v2, v1v2}) =
C{v1v2, v1v2}+max{S〈C〉({v1v2}),S〈C〉({v1v2})}+1 =
1+0+1 = 2. Thus, Smax〈C〉(G(δ)/SCC) = 2, which is the
traversal diameter of the state space of δ�vs1 and the value
returned by Algorithm 1.

Tightness of the Traversal Diameter
Having a product of the traversal diameters of all projections
as a compositional bound may not seem like a practically
helpful bound. However, it is a substantial improvement over
what can currently be done in the case when there is not
a non-trivial acyclic lifted dependency graph. When given
a set of projections without acyclicity in the dependencies
between them, existing compositional bounding approaches
use the product of the projected state space sizes EXP(δ) as
a bound (Rintanen and Gretton 2013, AGN1, and AGN2).
Using the product bound of Theorem 2 is a substantial im-
provement over that because, as shown in the next theorem,
the traversal diameter can be exponentially smaller than the
size of state space.

Theorem 5. There are infinitely many factored systems
whose traversal diameters are exponentially smaller (in the
number of state variables) than the size of their state spaces.

Proof. For an arbitrary number n ∈ N, we construct a sys-
tem whose state space size is a factor of n more than its
traversal diameter. Let xi, for 0 ≤ i ≤ n, be n + 1 states.
Consider the system {(x0, xi) | 1 ≤ i ≤ n}. The traversal
diameter of this system is 1 since, the only possible transi-
tions are from state x0 to a state xi, for 1 ≤ i ≤ n. However
the system’s state space has at least n+ 1 states.

Example 8. δ�vs2 from Example 2 whose state space is
shown in Figure 1c is an example of the above construction



with n = 3. We can take x0, x1, x2, and x3 to be v3v4, v3v4,
v3v4, and v3v4, respectively.

Practical Bounding Using the Traversal
Diameter

In the last section, we laid down a theoretical foundation
suggesting that the traversal diameter could be successfully
used for compositional upper bounding. A schema for algo-
rithms utilising that theoretical framework to composition-
ally bound the traversal diameter of a system δ is

ARB(δ) = ch
vs1..n∈VS1..n

Πvs∈vs1..n(TRAVD(δ�vs) + 1)− 1

Above, VS1..n denotes the set of all partitions of the set of
state variables D(δ), and ch denotes a function that chooses
one partition vs1..n to use for compositional bounding.

To fully specify the bounding algorithm ARB we need to
determine the choice of the partition of D(δ) using which
we obtain the projections. Optimally, the function ch would
be instantiated with the function min that would choose
the partition which results in the smallest bound. However,
since the size of VS1..n is intractable, min would be an im-
practical solution. We adopt a practically feasible approach
used by AGN2: we take the situation where D(δ) models
all assignments in the SAS+ model generated using Fast-
Downward’s preprocessing step (Helmert 2006), and choose
ch to return a partition vs1..n s.t. each equivalence class in
vs1..n has elements that model all the assignments of exactly
one SAS+ state variable.

Now that we have fully specified ARB we compare it to
other bounding algorithms. We experimentally evaluate dif-
ferent bounding algorithms on problems from previous In-
ternational Planning Competitions (IPC), and the unsolv-
ablity IPC, open Qualitative Preference Rovers benchmarks
from IPC2006 (to which we refer as NEWOPEN) and the
hotel-key protocol verification problem from AGN2. Our ex-
periments were conducted on a uniform cluster with time
and memory limits of 30minutes and 8GB, respectively.

The first two columns in Table 1 show that compared to
Nsum〈EXP〉, ARB fails to compute bounds tighter than 109

in most domains. That is because when there is branching
in the dependency graph, Nsum computes a bound that has
additive terms like the ones in Example 4, while on the other
hand, ARB always returns a bound that is the product of the
projections’ traversal diameters.

Now, recall that Theorem 5 predicts the possibility for ex-
ponential improvement in the computed bound if, instead
of EXP, we use ARB to bound a system. This suggests an-
other utilisation of ARB: to use it as a base case function
for Nsum instead of EXP. This way ARB will be only used
to bound projections which cannot be further decomposed
by Nsum, i.e. projections whose variable dependencies are
strongly connected. Indeed, using ARB as a base case func-
tion improves the computed bounds in 71% of the problems,
and the improvement is at least 50% in 66% of the cases.
The second row in Table 1 gives an overview of the improve-
ment in the bounds computed by Nsum〈ARB〉 compared to
Nsum〈EXP〉 for different domains. A more detailed compar-
ison is in the top plot of Figure 3.

The Traversal Diameter and State Space
Acyclicity

The construction used in the proof of Theorem 3 suggests
that the bounds computed by ARB are better than those com-
puted by EXP only if the projections of the system have
acyclicity and “branching” in their state space. In fact the
following proposition holds.
Proposition 4. If G(δ) is strongly connected, then td(δ) =
EXP(δ).

This begs the question of whether ARB can somehow
be combined with the algorithm proposed by AGN2, which
also exploits acyclicity in the state space, to compute tighter
bounds and better system decompositions. We first review
the approach of AGN2. A critical element of their approach
is a system abstraction to which they refer as a snapshot. It
models the system when we fix the assignment of a subset
of the state variables, removing actions whose preconditions
or effects contradict that assignment.
Definition 13 (Snapshot). For states x and x′, let
agree(x, x′) denote |D(x) ∩ D(x′)| = |x ∩ x′|, i.e. every
variable that is in the domains of both x and x′ has the same
assignment in x and x′. The snapshot of δ at a state x is

δ|•x= {(p, e) | (p, e) ∈ δ∧agree(p, x)∧agree(e, x)}�D(x)

where D(x) denotes D(δ) \ D(x).
Based on snapshots, and given a system δ, a set of vari-

ables vs , and a base case function b, AGN2 defined a method
Smax〈b〉(vs, δ).3 That method computes the weightiest path
in the state space G(δ�vs), where the weight of a state x is
b(δ|•x). It is only defined if G(δ�vs) is acyclic. Combining
Smax and Nsum, AGN2 suggested Algorithm 2 as a hybrid
approach to exploit acyclicities in state spaces and depen-
dencies. In HYB, vs1..n is a partition ofD(δ), and ac(vs1..n)
is a member of vs1..n s.t. the projection δ�ac(vs1..n) has a
non-trivial acyclic state space. HYB interleaves the functions
Nsum and Smax. It only calls Smax if the given system’s de-
pendencies are strongly connected and δ has acyclic projec-
tions on members of vs1..n. If both Nsum and Smax cannot
be called, HYB uses EXP as a base case function.

Algorithm 2: HYB(δ, vs1..n)

SCC := set of strongly connected components of GD(δ)

GVS := GD(δ)/SCC
if 2 ≤ |V (GVS)|
return Nsum〈HYB(•, vs1..n)〉(δ,GVS)

if ∃vsi = ac(vs1..n)
vsi := ac(vs1..n)
return Smax〈HYB(•, vs1..n \ {vsi})〉(vsi, δ)

return EXP(δ)

Example 9. From Examples 1 and 2, consider the system
δ and the partition vs1..n = {vs1, vs2} of its state vari-
ables. The SCCs of the dependency graph of δ are vs1

3We overload the same symbol used in Definition 12



and vs2, and thus the lifted dependency graph GVS com-
puted by HYB is the one in Example 3. Accordingly, HYB
will return Nsum〈HYB(•, vs1..n)〉(δ,GVS). Then we have
that Nsum〈HYB(•, vs1..n)〉(δ,GVS) = HYB1 + HYB2 +
HYB1HYB2, where HYBi = HYB(δ�vsi , vs1..n) for i ∈
{1, 2}. Since δ�vs2 has the acyclic state space shown in Fig-
ure 1c we have HYB2 = Smax〈HYB(•, vs1)〉(vs2, δ�vs2) =
1. Since the state space of δ�vs1 is not acyclic, HYB1 =
EXP(δ�vs1) = 3. Thus, HYB(δ, vs1..n) = 1+3+1×3 = 7.

Since HYB already exploits state space acyclicity using
Smax, the main question now is whether using ARB as a
base case function for HYB instead of EXP can improve the
computed bounds. The short answer to that question is: yes,
bounds computed by HYB using ARB as a base case func-
tion are better in 68% of the problems compared to those
computed with EXP as a base case, and the improvement is
at least 50% in 71% of the cases. The third column of Ta-
ble 1 and the bottom plot of Figure 3 show a fine-grained
comparison between the bounds.

To understand the improvement in the computed bounds,
recall that if the dependency graph has one SCC, HYB will
pick one vsi from vs1..n, s.t. the state space of δ�vsi is
acyclic. Then HYB uses Smax to decompose δ into multi-
ple abstractions: the projection δ�vsi and the snapshots of δ
on the different states in U(δ). Then Smax calls HYB recur-
sively on each of the snapshots of δ, with vsi removed from
vs1..n. This is repeated until the state space of the projection
on each remaining member of vs1..n is not acyclic. Then
the base case function is called to bound the projection on
the remaining members of vs1..n. However, as shown in the
next example, if a projection’s state space is not acyclic, its
traversal diameter can still be much tighter than the size of
its state space. This will lead to much tighter bounds com-
puted by HYB if it uses ARB as a base case function instead
of EXP.

Example 10. Consider the computation in Example 9.
If ARB is used as a base case function, HYB1 =
ARB(δ�vs1 , vs1..n) = TRAVD(δ�vs1) = 2 (for the
evaluation of TRAVD(δ�vs1) see Example 7). Thus
HYB(δ, vs1..n) = 1 + 2 + 1× 2 = 5.

Using the Bounds To Compute Plans AGN2 showed that
when the bounds computed by HYB, with EXP as a base
case function, are used as a horizon for the SAT-based plan-
ner Madagascar MP (Rintanen 2012), the coverage of MP
substantially increased. Indeed, it solved satisfiable and un-
satisfiable planning problems that other state-of-the-art plan-
ners could not solve. We now study the improvement in the
coverage of MP if we use as horizons the bounds computed
by HYB when ARB is the base case. Compared to using
EXP as a base case, ARB increases the coverage by 234 for
solvable problems. Those problems come from the domains:
NEWOPEN (221 problems), ROVER (7 problems), SATEL-
LITE (5 problems), and TPP (1 problem). Also, using ARB
as a base case for HYB allows MP to prove the unsolvability
of an additional 4 problems from the domain NEWOPEN and
52 problems from the domain HOTELKEY, that it could not
solve when EXP is used as a base case function.

Figure 3: Top (resp. bot.): bounds computed by Nsum (resp.
HYB) when EXP (vert.) is base case function vs ARB (hor.).

Conclusions and Future Work
We contributed a novel compositional upper bounding ap-
proach in planning. Our technique exposes problems with
a relatively wide variety of dependency structures to upper
bounding. Previous approaches only apply to a limited class
of problems that have a branching 1-way state variable de-
pendency structure. Our analysis treats a much broader class
of problems, with 2-way dependencies. Our new approach,
however, is most useful when combined with other existing
compositional bounding techniques, where it leads to sub-
stantial improvement in the computed bounds. We use it to
decompose problem abstractions produced using the other
compositional bounding techniques when those abstractions
have bidirectional dependencies.

An open problem is to devise a method to practically de-
compose large concrete problems with strongly connected
dependencies instead of only small abstractions produced by
other compositional algorithms. Also, investigating the ef-
fect of the partition of the state variables used to decompose
problems on the value of computed bounds is an interesting
avenue for future research.

Acknowledgements We thank Dr. Charles Gretton, Dr.
Michael Norrish, Lars Hupel and Simon Wimmer for proof-
reading parts of this paper, and Lars Hupel for helping me set
up the experiments. We also thank Prof. Tobias Nipkow and
the German Research Foundation for funding that facilitated
this work through the DFG Koselleck Grant NI 491/16-1.



Domain(#inst.) ARB Nsum HYB

newopen(1440) 0 460 1107 459 0 1439 1440 1294 491

hotelKey(1000) 87 518 524 412 412 1000 1000 899 899

logistics(407) 51 407 407 406 365 407 407 406 365

elevators(210) 67 162 163 162 162 162 163 162 162

rover(182) 28 106 119 65 2 176 177 92 6

nomystery(124) 28 124 124 124 51 124 124 124 124

zeno(50) 17 50 50 50 50 50 50 50 50

hiking(40) 20 20 20 20 20 27 26 20 20

TPP(120) 11 53 55 22 21 107 108 19 19

Transport(197) 9 44 43 13 13 45 44 13 13

GED(40) 5 5 5 5 5 5 5 5 5

visitall(90) 16 36 36 16 16 36 36 16 16

bottleneck(50) 6 6 6 6 6 50 50 0 0

openstacks(131) 8 28 28 8 8 116 116 6 6

3unsat(30) 5 5 5 5 5 30 30 0 0

tiles(45) 23 23 23 23 23 23 23 23 23

satellite(10) 10 10 10 10 8 10 10 10 8

hyp(286) 1 187 187 23 23 285 285 33 33

scanalyzer(60) 3 10 10 3 3 10 10 3 3

sliding(25) 13 13 13 13 13 13 13 13 13

gripper(54) 7 39 39 7 7 39 39 7 7

storage(30) 7 7 7 7 7 7 7 7 7

trucks(34) 2 6 6 4 4 7 7 5 5

parcprinter(60) 0 23 23 3 3 27 27 3 3

pipesworld(101) 2 53 53 2 2 55 53 2 2

pegsol(133) 2 3 3 2 2 3 3 2 2

Table 1: Col. 1: the domain name and the number of
problems in it. Col. 2: the number of problems for which
ARB computed a bound less than 109. Col. 3 (resp. 4) has
four numbers: (i) problems for which Nsum〈EXP〉 (resp.
HYB〈EXP〉) computed a bound less than 109 (ii) prob-
lems for which Nsum〈ARB〉 (resp. HYB〈ARB〉) computed
a bound less than 109 (iii) problems for which the bound
by Nsum〈ARB〉 (resp. HYB〈ARB〉) is less than the bound by
Nsum〈EXP〉 (resp. HYB〈EXP〉) (iv) problems for which the
bound by Nsum〈ARB〉 (resp. HYB〈ARB〉) is less than half
the bound by Nsum〈EXP〉 (resp. HYB〈EXP〉).

References
Abboud, A.; Williams, V. V.; and Wang, J. 2016. Approx-
imation and fixed parameter subquadratic algorithms for ra-
dius and diameter in sparse graphs. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete
Algorithms, 377–391. SIAM.
Abdulaziz, M.; Gretton, C.; and Norrish, M. 2015. Veri-
fied Over-Approximation of the Diameter of Propositionally
Factored Transition Systems. In Interactive Theorem Prov-
ing. Springer. 1–16.
Abdulaziz, M.; Gretton, C.; and Norrish, M. 2017. A State
Space Acyclicity Property for Exponentially Tighter Plan
Length Bounds. In International Conference on Automated
Planning and Scheduling (ICAPS). AAAI.
Abdulaziz, M. 2017. Formally Verified Compositional Al-
gorithms for Factored Transition Systems. The Australian
National University.

Aingworth, D.; Chekuri, C.; Indyk, P.; and Motwani, R.
1999. Fast estimation of diameter and shortest paths (with-
out matrix multiplication). SIAM Journal on Computing
28(4):1167–1181.
Alon, N.; Galil, Z.; and Margalit, O. 1997. On the exponent
of the all pairs shortest path problem. Journal of Computer
and System Sciences 54(2):255–262.
Baumgartner, J.; Kuehlmann, A.; and Abraham, J. 2002.
Property checking via structural analysis. In Computer
Aided Verification, 151–165. Springer.
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic model checking without BDDs. In TACAS, 193–
207.
Chan, T. M. 2010. More algorithms for all-pairs short-
est paths in weighted graphs. SIAM Journal on Computing
39(5):2075–2089.
Chechik, S.; Larkin, D. H.; Roditty, L.; Schoenebeck, G.;
Tarjan, R. E.; and Williams, V. V. 2014. Better approxi-
mation algorithms for the graph diameter. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, 1041–1052. Society for Industrial and Applied
Mathematics.
Fredman, M. L. 1976. New bounds on the complexity of
the shortest path problem. SIAM Journal on Computing
5(1):83–89.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In ECAI, 359–363.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2):243–302.
Pardalos, P. M., and Migdalas, A. 2004. A note on the com-
plexity of longest path problems related to graph coloring.
Applied Mathematics Letters 17(1):13–15.
Rintanen, J., and Gretton, C. O. 2013. Computing upper
bounds on lengths of transition sequences. In International
Joint Conference on Artificial Intelligence.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tificial Intelligence 193:45–86.
Roditty, L., and Vassilevska Williams, V. 2013. Fast ap-
proximation algorithms for the diameter and radius of sparse
graphs. In Proceedings of the Forty-Fifth Annual ACM Sym-
posium on Theory of Computing, 515–524. ACM.
Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing 1(2):146–160.
Williams, B. C., and Nayak, P. P. 1997. A reactive planner
for a model-based executive. In International Joint Confer-
ence on Artificial Intelligence, 1178–1185. Morgan Kauf-
mann Publishers.
Yuster, R. 2010. Computing the diameter polynomially
faster than APSP. arXiv preprint arXiv:1011.6181.


