
Noname manuscript No.
(will be inserted by the editor)

Formally Verified Algorithms for Upper-Bounding State
Space Diameters

Mohammad Abdulaziz · Michael Norrish ·
Charles Gretton

Received: date / Accepted: date

Abstract A completeness threshold is required to guarantee the completeness of
planning as satisfiability, and bounded model checking of safety properties. We in-
vestigate completeness thresholds related to the diameter of the underlying transition
system. A valid threshold, the diameter is the maximum element in the set of lengths
of all shortest paths between pairs of states. The diameter is not calculated exactly in
our setting, where the transition system is succinctly described using a (proposition-
ally) factored representation. Rather, an upper bound on the diameter is calculated
compositionally, by bounding the diameters of small abstract subsystems, and then
composing those.

We describe our formal verification in HOL4 of compositional algorithms for
computing a relatively tight upper bound on the system diameter. Existing compo-
sitional algorithms are characterised in terms of the problem structures they exploit,
including acyclicity in state-variable dependencies, and acyclicity in the state space.
Such algorithms are further distinguished by: (i) whether the bound calculated for
abstractions is the diameter, sublist diameter or recurrence diameter, and (ii) the “di-
rection” of traversal of the compositional structure, either top-down or bottom-up. As
a supplement, we publish our library—now over 14k lines—of HOL4 proof scripts
about transition systems. That shall be of use to future related mechanisation efforts,
and is carefully designed for compatibility with hybrid systems.

Keywords Formal Verification · Diameter · Transition Systems · Completeness
Threshold · AI Planning · SAT-based Planning · Bounded Model Checking

Mohammad Abdulaziz
Technical University of Munich
E-mail: mohammad.abdulaziz@in.tum.de

Michael Norrish
Australian National University and Data61 Canberra Research Lab.
E-mail: michael.norrish@data61.csiro.au

Charles Gretton
Australian National University and Griffith University
E-mail: charles.gretton@anu.edu.au

2 Mohammad Abdulaziz et al.

1 Introduction

The state spaces of problems in fields such as artificial intelligence (AI) planning and
model checking can be modelled as digraphs (a.k.a. directed acyclic graphs), where
vertices and edges correspond to states and transitions, respectively. Such a digraph
is represented as a propositionally factored transition system in a language such as
STRIPS, by Fikes and Nilsson [29], or SMV, by McMillan et al. [40]. Factored rep-
resentations have the advantage of being smaller, sometimes exponentially, than an
explicit representation of the corresponding digraph. Compact factored representa-
tions are necessary because of the enormous state spaces of realistic systems.

The diameter of a digraph is a well studied topological property that is conceptu-
ally important in this setting. It is equal to the maximum element in the set of lengths
of all shortest paths between pairs of vertices – i.e. the length of a longest short-
est path. The diameter is a solution-length bound, an ingredient that can guarantee
the completeness of powerful solution procedures. For example, the diameter corre-
sponds to a completeness threshold in planning as satisfiability, see Kautz et al. [34],
and bounded model checking of safety properties, see Biere et al. [11].

A number of algorithms have been proposed to compute the diameter. State-of-
the-art algorithms have a computation time worse than quadratic in the size of the
digraph [5, 57]. Such algorithms suppose: (i) the digraph is available in an explicit
form (i.e. not in a factored form), or (ii) that the diagraph is constructed explicitly dur-
ing the diameter calculation. Consequently they are rarely applicable in our setting,
where factored representations of digraphs with 21000 vertices are not uncommon.
Called the state space explosion problem, this has important consequences for a vari-
ety of reasoning tasks, and is discussed more broadly by Clarke et al. [19]. Due to high
runtime cost and an inability to scale to super-large digraphs, the setting of planning
and model checking necessitates an indirect approach to calculating a solution-length
bound.

Discovery and exploitation of compositional structure underlies a number of im-
portant solution procedures that reason about factored transition systems [9, 16, 21,
30, 32, 35, 55]. The only known feasible approaches for computing completeness
thresholds are compositional in the sense that the diameter is approximated by com-
posing bounds computed for subproblems [2, 8, 37, 47]. In this work we formally
verify compositional algorithms that over-approximate the diameter. Such algorithms
upper-bound the state space diameters of a set of subproblems that correspond to ab-
stractions of the concrete system. Those bounds are composed to produce an upper
bound on the diameter of that concrete system. The main advantage of this approach
is that abstractions have substantially smaller state spaces.1 In general it is not always
the case that such an approach is usefully applicable to the given transition system.
Nonetheless, there are structures whose presence in the transition system make it
possible to compositionally upper-bound the diameter. We consider compositional
algorithms that exploit acyclicity in “state-variable dependencies” [3], and acyclic-

1 An abstraction’s state space corresponds to a minor of the digraph modelling the state space of the
concrete system. A minor is derived by a sequence of vertex contractions, as well as edge and vertex
deletions. Vertex contraction of two vertices is an operation that replaces the two vertices with one new
vertex that inherits their incoming and outgoing edges.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 3

ity in the state space [4]. We find such structures to be abundant in AI planning and
verification benchmarks.

This work describes our formal verification of compositional bounding algo-
rithms using the interactive theorem prover HOL4 [52]. Using that proof assistant we
discovered many mistakes in our work at different stages, as well as mistakes in the
literature. Indeed, many of the algorithms we treat were invented by us, and followed
from insights gained during proof mechanisation work that helped us substantially
strengthen the compositional approach. We would describe this as a “computer-aided
algorithm design” process that started with the objective of proving the soundness of
theorems and algorithms from the literature.

In addition to helping us to develop our algorithms, and giving us extra assurance
about our results, we believe that the formalisation of AI algorithms is of great utility.
This is especially true if those algorithms are to be deployed in safety critical appli-
cations, or in autonomous exploration of extraterrestrial space. The justifications for
requiring formal correctness guarantees are twofold. First, if the output of the algo-
rithm is hard to test—e.g. that a plan does not exist—then we require correctness to
assure the sound operation of the system at hand. For example, if a chemical plant
can be rendered safe in the event of a potentially dangerous subsystem failure, the
planner must be able to identify that course of action which averts a catastrophic fail-
ure. Secondly, if the output is computationally easy to test—e.g. sound operation is
easily guaranteed—it remains a potentially dangerous waste of time and resources to
have a computationally expensive planning subsystem that produces unusable plans.

Along with this manuscript we publish a rich formal proof library about transi-
tion systems. Many theorems in our formalisation apply to infinite state transition
systems. Accordingly, we anticipate that our library shall be used for applications be-
yond the algorithms that we verify in this work, like algorithms for hybrid systems,
for instance.

Propositionally Factored Transition Systems In this representation, every state (i.e.
vertex) is defined as an assignment to a set of Boolean state variables. For example,
consider a hotel that has a number of rooms such that, at a given time, each room
opens with one element from a set of keys. An assignment to state variables will
model, among other things, whether or not a specific room can be accessed using a
specific key.

In the factored representation multiple transitions (i.e. edges) are factored into ac-
tions that identify which states are directly accessible from which states. For instance,
consider an action that, given the variable indicating that a certain room opens with
a key i is true (its precondition), negates that variable and sets another one indicating
that the room currently opens with a different key j (its effect). This action factors all
the transitions that go from states where the room opens with key i to states where
it opens with key j. In addition to the compactness of this representation, without it,
we would not be able to pursue the proofs of our results, or define concepts like the
sublist diameter (see Section 5), as naturally.

Abstractions Compositional approaches involve solving given problems for state spaces
of “abstractions” of the given system, which are minors of the digraph modelling the

4 Mohammad Abdulaziz et al.

state space. Abstractions that we consider are projection over a set of state variables
(see Section 4.1), and snapshotting over an assignment of a set of state variables (see
Section 6). In projection, state variables are removed from the factored system. This
is equivalent to repetitively merging pairs of vertices in the state space with the re-
sulting vertex inheriting all the edges of its constituents, i.e. vertex contraction. In
snapshotting, we exclude form the factored system the actions whose preconditions
or effects violate a partial assignment to state variables. This can be understood as
consecutive edge and vertex deletions in the digraph.

State-Variable Dependency Informally, a state variable v1 depends on v2 iff the as-
signment of v2 at some state can possibly affect assignment of v1 in a current or
a future state. This relation lifts to sets of variables, where a set vs2 depends on
vs1 iff vs2 has a variable that depends on some variable in vs1. A practically im-
portant class of projections are ones done on partitions of the state variables whose
members are closed under mutual dependency, i.e. dependencies between different
equivalence classes of variables are acyclic. Those partitions capture the abundantly
present acyclic dependencies between different modules of real-world systems, such
as different circuit components.

1.1 Contributions

We have formally verified compositional algorithms that compute a completeness
threshold. Here, a threshold is an upper bound on the diameter of the state space
of a propositionally factored transition system. Our proofs of the validity of these
algorithms are done using the interactive theorem prover HOL4. This work is the
first publication of the details of the proof mechanisation work associated with our
previous conference papers, [3] and [4].

The first algorithm is the top-down algorithm. It exploits acyclic variable depen-
dencies to compositionally upper-bound the diameter by using recurrence diameters
of projections. The recurrence diameter is the length of the longest simple (i.e. loop-
free) path. That algorithm was introduced in [3], where we showed that it outperforms
the best algorithm of the time—the bottom-up algorithm—in terms of tightness of
computed bounds. In [3] we briefly presented a preliminary form of the formalisation
of the top-down algorithm. In this work we provide a complete formalisation of that
algorithm. We have also generalised much of the theory underlying that formalisa-
tion, so that many of the general theorems now apply to systems whose state variables
are not necessarily Boolean and whose state spaces are not necessarily finite.

We introduced the two other algorithms in [4]. The second compositional algo-
rithm exploits acyclicity in the state space. The third algorithm is a hybrid algorithm
that combines the top-down algorithm and the compositional algorithm for acyclic
state spaces in a mutually recursive way. In [4] we showed that the hybrid algorithm
produces bounds that are exponentially tighter than the top-down algorithm. In this
work we formally verify both algorithms in HOL4.

In order to formally verify the correctness of our compositional algorithms we
built a library of formal proofs about factored transition systems in the Higher Order

Formally Verified Algorithms for Upper-Bounding State Space Diameters 5

Logic (HOL) interactive theorem prover HOL4, by Slind and Norrish [52]. There
is a rich body of previous formalisation of concepts related to transition systems
in different logics and theorem proving systems. A lot of that work (e.g. [28, 44])
focuses on classical textbook results on finite automata, and reachability of states
within those automata in the setting of model checking LTL formulae. We believe that
our work is the first to formalise transition systems in their factored representation,
and to focus on the topological properties of their state spaces.

1.2 Paper Structure

This paper is organised as follows. In Section 2 we discuss previous related work
on upper-bounding or computing the diameter. In Section 3 we formalise the basic
concepts related to factored transition systems, action execution semantics and their
formalisation. In Section 4 we discuss background on existing algorithms for exploit-
ing acyclic dependency. In Section 5 we describe our formalisation of the top-down
algorithm. In Section 6 we describe our formalisation of our upper-bounding algo-
rithm that exploits acyclicity in the state space. Section 7 gives our hybrid algorithm
and the formalisation of that. Lastly, in Section 8 we present concluding remarks
on our experience in formalising our algorithms and possible directions for future
research.

2 Related Work

2.1 Diameter and Bounding Algorithms

Computing the diameter exactly can be done by solving the All Pairs Shortest Path
(APSP) problem for the (di)graph at hand. APSP cannot be solved in better than
quadratic time (in the number of vertices of the (di)graph), and existing exact solu-
tions have a run-time close to cubic (e.g. Fredman et al. [31], Alon et al. [6], Chan et
al. [17], and Rafael Yuster [57]). Furthermore, Roditty et al. [49] showed that there is
strong evidence that the diameter cannot be computed in time better than quadratic.
This run-time can be very limiting in digraphs arising in practical applications due
to their size. Accordingly, in the algorithms community a lot of work has been done
on developing methods to approximate the diameter. In a seminal paper, Aingworth
et al. [5] devised an algorithm that computes a 3

2 -approximation of the diameter for
digraphs in O(m

√
n log n+n2 log n) time, where n is the number of vertices and m

is the number of edges. Examples of other work studying approximation algorithms
for digraph diameters include Roditty et al. [49], Chechick et al. [18] and Aboud et
al. [1]. To our knowledge all diameter approximation techniques studied in the algo-
rithms community are lower bounding techniques.

Treating upper bounds on diameters, Paradalos et al. [43] showed that computing
the recurrence diameter is an NP-hard problem, with the only known exact solutions
taking exponential time. Accordingly it is much harder to compute than the diam-
eter, especially for practical digraphs. Furthermore, the hardness of computing the

6 Mohammad Abdulaziz et al.

recurrence diameter in digraphs was reaffirmed by Björklund et al. [13], where they
showed that, in the general case, it is impossible (under plausible assumptions) to get
a polynomial approximation of the length of the longest path in polynomial time. Ex-
isting polynomial time approximation algorithms for the longest path, like the ones
by Alon et al. [7] and Björklund et al. [12], can only find paths logarithmic in the
length of the longest path.

In the graph theory and the combinatorics communities, diameters of undirected
graphs have been extensively studied since 1965, where work by Moon et al. [41],
Erdős et al. [27], and Knyazev [36] computed upper bounds for different classes of
undirected graphs. In the case of digraphs work on upper-bounding diameters started
more recently. In 1992 Soares [53] provided a tight upper bound on the diameter of
biregular digraphs. Then starting in 2000, Dankelmann et al. treated different struc-
tures of digraphs [23, 24, 25].

The completeness of bounded model-checking (Biere et al. [10, 11]) and other
model checking methods [45], and satisfiability (SAT) based planning (Kautz et
al. [34]) depends on having an upper bound on the diameter or the recurrence diame-
ter (depending on the verification problem at hand). The tighter that bound the more
quickly the algorithm will likely terminate. Because of that, studying the diameter
and the recurrence diameter is an active research topic in the verification commu-
nity. Studies on this topic have been undertaken by Biere et al. [10, 11], Kroening et
al. [38, 39], Sheeran et al. [51], Bundala et al. [15], and Clarke [20]. The dominant
approach to compute the diameter or the recurrence diameter in verification applica-
tions is via encodings in SAT (see [11, 39]). Most notably, it is conjectured in [11] that
for the question of “whether for a certain digraph, a number N is its diameter”, there
is not a SAT encoding of size polynomial in N . However, if the question is “whether
N is the recurrence diameter”, they provide a SAT encoding of size O(N2), which
was improved in [39] to O(N logN).

Applying the compositional approach for diameter upper-bounding was pioneered
by Baumgartner et al. [8], in the context of bounded model-checking. They showed
that the diameter of the state space is upper-bounded by a polynomial in the recur-
rence diameters of projections. In that work they introduced an algorithm, the bottom-
up algorithm, to combine the recurrence diameters of projections into an upper bound
on the concrete system diameter. That algorithm used acyclicity in state-variable de-
pendencies to elicit the necessary projections. Also, more recently, Rintanen and
Gretton applied a similar algorithm to upper-bound the diameters for AI planning
problems [47], but using the state space cardinalities as proxies for recurrence diam-
eters.

In [3], we introduced the top-down algorithm to combine recurrence diameters
into an upper bound on the concrete system diameter. We experimentally showed
that this algorithm consistently computes tighter bounds than the bottom-up algo-
rithm on standard AI planning benchmarks. We also showed that instead of using
recurrence diameter, one can use the sublist diameter, a topological property that can
be exponentially smaller than the recurrence diameter.

Lastly, in [4] we introduced two more compositional upper-bounding algorithms.
The first algorithm exploits acyclicity in the state space to compute value-based ab-
stractions we referred to as snapshots. It then computes the diameters of the snap-

Formally Verified Algorithms for Upper-Bounding State Space Diameters 7

shots and combines them into an upper bound on the concrete system diameter. We
also introduced a hybrid algorithm that exploits both acyclicity in state-variable de-
pendency and acyclicity in the state space. That algorithm computes much smaller
abstractions than any of the previous compositional algorithms, and also computes
exponentially tighter bounds. We showed that those bounds combined with a modern
SAT-based planner [46], enabled the verification of open benchmarks (i.e. problems
whose validity was never verified), most notably, large instances of the hotel key pro-
tocol introduced by Jackson [33, p. 185].

2.2 Formalisation Related-Work

Most relevant to our work are formalisations of automata theory and their reachabil-
ity properties, in the context of model checking. Textbook results in automata theory
were formalised in many approaches. For example, the Myhill-Nerode theorem was
formalised in intuitionistic logic by Constable et al. [22] and Doczkal et al. [26]. It
was also formalised by Paulson [44] in Isabelle/HOL. He used hereditarily finite sets
as the type of states, unlike our formalisation which uses finite maps. Furthermore,
Wu et al. [56] formally prove that theorem using a formalisation of regular expres-
sions. Results and algorithms related to reachability in automata were formalised by
Sprenger [54], Schimpf et al. [50], and Esparza et al. [28], where the main goal of
those authors was to obtain formally verified model checking algorithms and imple-
mentations.

3 Basic Concepts and Notations

Definition 1 (Digraph). A digraph whose vertices are labelled by values of type α
(α-graph) Gα is represented by the tuple 〈V,E, f〉. V is the set of vertices, which we
denote as V (Gα). E is a set of edges, which are distinct ordered pairs of vertices
from V (Gα), which we denote as E(Gα). f : V (Gα) ⇒ α is a labelling function,
where a vertex u1 ∈ V (Gα) has the label f(u1) of type α, which we denote as
Gα(u1). We note that when we illustrate a digraph in a figure, a vertex u1 is denoted
with the label f(u1) instead of the vertex name u1. We also omit self loops. For
u1 ∈ V (Gα), the set of children of u1 is childrenGα(u1) = {u2 | (u1, u2) ∈ E(Gα)}.
If f is injective, we use l ∈ Gα to denote that l is a label of some u1 ∈ V (Gα), i.e.
l = f(u1), and we use childrenGα(l) to refer to the labels of the children of u1, i.e.
{f(u2) | u2 ∈ childrenGα(u1)}.

A DAG is represented by a list of vertices topologically sorted w.r.t. a binary
relation R that encodes edges of a digraph, as follows. In HOL we model a DAG
with the predicate top-sorted-abs that means that l is a list of vertices of a digraph
topologically sorted w.r.t. to the binary relation R, which is taken to be the edge
relation in the digraph. This predicate is defined as follows in HOL:

HOL4 Definition (DAG).

8 Mohammad Abdulaziz et al.

top-sorted-abs R (u1 ::A) ⇐⇒
EVERY (λ u2. ¬R u2 u1) A ∧ top-sorted-abs R A

top-sorted-abs R [] ⇐⇒ T

In the definition above, EVERY is a high-order predicate that, given a predicate
and a list, returns true if every member of the list satisfies the given predicate. The
following basic properties hold for DAGs.

` top-sorted-abs R (u1 ::A) ∧ u2 ∈ set A ⇒ ¬R u2 u1

` top-sorted-abs R (u::A) ⇒ top-sorted-abs R A

We now define factored transitions systems, which are factored representations
of digraphs mainly used to compactly represent digraphs that model state spaces. In
these representations a digraph is propositionally factored, where vertices correspond
to “states” and sets of edges are compactly described in terms of “actions”. In this for-
malism edges and paths between vertices correspond to executing actions and action
sequences, respectively, between states. 2

Definition 2 (States and Actions). A state, x, is a finite map from variables—i.e.,
state-characterising propositions—to Booleans, i.e. a set of mappings v 7→ b. We
write D(x) to denote {v | v 7→ b ∈ x}, the domain of x. For states x1 and x2, the
union, x1] x2, is defined as {v 7→ b | if v ∈ D(x1) then b = x1(v) else b =
x2(v)}. Note that the state x1 takes precedence. An action is a pair of finite maps,
(p, e), where p represents the preconditions and e represents the effects. For action
π = (p, e), D(π) ≡ D(p) ∪ D(e).

We formalise factored transition systems by first defining states to be finite maps
α 7→ β from polymorphic type α to polymorphic type β. An action is a pair of such
states (α 7→ β) × (α 7→ β), and a factored transition system is a set of actions
(α 7→ β) × (α 7→ β) → bool. Note that in the formalisation we do not restrict
the codomain of states to be bool. This is because a lot of the theory we develop
applies to factored systems, regardless of the codomain of the state. Consequently
much of our scaffolding can be applied to theories about hybrid systems.

The next concept we define is execution, as follows.

Definition 3 (Execution). When an action π (= (p, e)) is executed at state x, it pro-
duces a successor state π(x), formally defined as π(x) = if p ⊆ x then e] x else
x. We lift execution to lists of actions

→
π , so

→
π (x) denotes the state resulting from

successively applying each action from
→
π in turn, starting at x, which corresponds

to a path in the state space.

Action execution and action sequence execution are formalised as follows:

HOL4 Definition 3 (Execution).

2 This representation is equivalent to representations commonly used in the model checking and AI
planning communities (e.g. STRIPS by Fikes and Nilsson [29] and SMV by McMillan et al. [40]). Whereas
conventional expositions in the planning and model-checking literature would also define initial conditions
and goal/safety criteria, here we omit those features from discussion. Our bounds and the different topo-
logical properties we consider are independent of those features.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 9

state-succ x (p,e) = if p v x then e] x else x

ex(x ,π::
→
π) = ex(state-succ x π,

→
π)

ex(x ,[]) = x

The result of executing an action (p,e) on a state x depends on whether the precondi-
tions of the action are satisfied by the state or not, which is modelled by the p v x
relation. If the state satisfies the preconditions, then the state resulting from the ex-
ecution is the same as the original state, but amended by the effects of the executed
action. Otherwise the result of the execution is the same as the original state. The
way we model amending the state by an action effect is by using the finite map union
operation e] x . We note that this finite map union operation is not commutative,
where it gives precedence to the assignments of its first argument. For an action se-
quence

→
π , the execution semantics are lifted in a straightforward way. A sanity check

of our execution semantics is the following theorem, which states that the result of
executing a valid action sequence on a valid state is also a valid state.

` →π ∈ δ∗ ∧ x ∈ U(δ) ⇒ ex(x ,
→
π) ∈ U(δ)

Now that we have defined states, actions and execution, we are able to define a
factored transition system as follows.

Definition 4 (Factored System). For a set of actions δ we write D(δ) for the domain
of δ, which is the union of the domains of all the actions in δ. The set of valid states,
written U(δ), is {x | D(x) = D(δ)}. The set of valid action sequences is the Kleene
closure of δ, i.e δ∗ = {→π | set(

→
π) ⊆ δ}, where set(l) is the set of members in list l.

δ is the factored representation of the digraph G(δ) ≡ 〈V,E, f〉, where V =
U(δ), E ≡ {(x, π(x)) | x ∈ U(δ), π ∈ δ}, and f is the identity function. We refer to
G(δ) as the state space of δ. Lastly, for states x and x′, x x′ denotes that there is
a
→
π ∈ δ∗ such that

→
π (x) = x′.

We formalise the set of valid states and valid action sequences as follows:

HOL4 Definition 4 (Factored System).

U(δ) = {x | D(x) = D(δ)}

δ∗ = {→π | set
→
π ⊆ δ }

We give examples of states and actions using sets of literals. For example, {v1, v2}
is a state where state variables v1 is (maps to) true, v2 is false, and the domain of the
state is the set of variables {v1, v2}. ({v1, v2}, {v3}) is an action that if executed in a
state where v1 and v2 hold, it sets v3 to true. D(({v1, v2}, {v3})) = {v1, v2, v3}.
Example 1. Consider the following factored representation, δ, and the digraph in
Figure 1 that represents its state space.{

p1 = ({v1, v2, v3}, {v1}), p2 = ({v1, v2, v3}, {v1, v2}), p3 = ({v1, v2, v3}, {v1}),
k1 = ({v3}, {v1, v2}), k2 = ({v3}, {v1, v2}), k3 = ({v3}, {v1, v2}), k4 = ({v3}, {v1, v2})

}
.

In the figure different states defined on the variables D(δ) = {v1, v2 v3} are shown.
Interpreting δ as a transition system, it has two “modes” of operation, where the vari-
able v3 in the preconditions of actions in δ determines the mode of operation. Each of

10 Mohammad Abdulaziz et al.

v1v2v3

v1v2v3 v1v2v3

v1v2v3

v1v2v3 v1v2v3 v1v2v3 v1v2v3

Fig. 1: The state space of δ in Example 1.

those modes represents one connected component of the digraph in Figure 1, where
actions k1, k2, k3, k4 (which execute successfully if v3 maps to false) represent edges
in the clique component. For instance, action k1 represents all incoming edges to ver-
tex {v1, v2 v3}. On the other hand, each one of the actions p1, p2, p3 (which execute
successfully if v3 maps to true) represents an edge in the simple path component.

The topological property that we consider upper-bounding is the diameter. The
diameter is the length of the longest shortest path between any two valid states. This
can be formally defined as follows for a propositionally factored system.

Definition 5 (Diameter). Let |l| be the length of a list l. The diameter is defined as
follows.

d(δ) = max
x∈U(δ)

max
→
π∈δ∗

min{|→π
′
| | →π

′
∈ δ∗ ∧→π (x) = →π

′
(x)}

We note that instead of quantifying over pairs of states, we quantify over states
and paths starting from those states. This avoids complexities arising from the situa-
tion when two states are not connected. If there is a valid action sequence between
any two states, then there is a valid action sequence between them that is no longer
than the diameter. In HOL4, we define the diameter in the following way:

HOL4 Definition 5 (Diameter).

d(δ) = max {min (Πd (x ,
→
π ,δ)) | x ∈ U(δ) ∧ →

π ∈ δ∗ }

where Πd is defined as

Πd (x ,
→
π ,δ) = { |→π

′
| | ex(x ,

→
π
′
) = ex(x ,

→
π) ∧ →

π
′
∈ δ∗ }

In the above definition, we first define the function Πd which returns, for a state
x , an action sequence

→
π , and a factored system δ, the set of lengths of all valid

action sequences in δ∗ that would yield the same execution result as
→
π , if executed

on x . Accordingly, the smallest member of Πd (x ,
→
π ,δ) would be the length of the

shortest action sequence equivalent to
→
π executed at x . The diameter then would be

the maximum length of the shortest equivalent action sequence for all pairs of states
and valid action sequences.

Example 2. Consider δ from Example 1. The diameter of δ is three since there is no
action sequence that connects the states {v1, v2, v3} and {v1, v2, v3} having fewer
than three actions.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 11

v1v2

v1v2 v1v2

v1v2

Fig. 2: The contraction of the state space equivalent to the projection of δ on {v1, v2}.

We note that a sufficient condition for the diameter and other topological proper-
ties that we define (i.e. the sublist and recurrence diameters) to exist, is that δ is finite
and the codomain of the different states is bool. Those conditions appear in some of
the theorems that follow. They guarantee that the argument sets to the functions max
and min are finite. This is not the only approach to guarantee that the topological
properties are well defined; however, it suits our needs since it models the factored
systems on which we applied our algorithms.

4 Using Acyclic Dependency for Compositional Bounding

In this section we provide some background material on compositional algorithms
that use abstractions induced by acyclicity in state-variable dependency. Those ab-
stractions are obtained by projecting the given system on sets of state variables closed
under mutual dependency. We first formalise the concepts of projection and state-
variable dependency. We then describe the bottom-up [8, 47] and the top-down [3]
compositional upper-bounding algorithms, which both exploit acyclic dependencies.

4.1 Projection and State-Variable Dependency

A key concept for compositional reasoning about factored representations of digraphs
is projection. Projection of a transition system is equivalent to a sequence of vertex
contractions in the digraph modelling the state space.

Definition 6 (Projection). Projecting an object (a state x, an action π, a sequence
of actions

→
π or a factored representation δ) on a set of variables vs restricts the

domain of the object or the components of composite objects to vs . Projection is
denoted as x�vs , π�vs ,

→
π �vs and δ�vs for a state, action, action sequence and factored

representation, respectively. In the case of action sequences, an action with no effects
after projection is dropped entirely.

Example 3. Letting vs = {v1, v2}, below is the projection δ�vs , for δ from Exam-
ple 1. Figure 2 shows G(δ�vs).

{
p1�vs = ({v1, v2}, {v1}), p2�vs = ({v1, v2}, {v1, v2}), p3�vs = ({v1, v2}, {v1}),
k1�vs = (∅, {v1, v2}), k2�vs = (∅, {v1, v2}), k3�vs = (∅, {v1, v2}), k4�vs = (∅, {v1, v2})

}

12 Mohammad Abdulaziz et al.

To formalise projecting a state x on a set of variables vs , we use the DRESTRICT
function that restricts the domain of a finite map to a set of variables vs , and it is
pretty printed as x�vs . For actions, action sequences, and factored systems, we defined
projection as follows.

HOL4 Definition 6 (Projection). For an action

(p,e)�vs = (p�vs ,e�vs)

For an action sequence

((p,e)::
→
π)�vs = if D(e�vs) 6= ∅ then (p,e)�vs ::

→
π �vs else

→
π �vs

[]�vs = []

Letting f LtM denote the image of a function f on some set t, projection for a factored
system is defined as

δ�vs = (λπ. π �vs)LδM

Please note that f LtM is a pretty printing of HOL4’s stock image function. For a set of
states
→
x �vs = (λ x . x �vs)L

→
x M

The following theorems show some of the basic properties of the projection operation
that we defined.

` x ∈ U(δ) ⇒ x�vs ∈ U(δ�vs)

` →π ∈ δ∗ ⇒ →
π �vs ∈ δ �vs

∗

` (ex(x ,
→
π �vs))�vs = ex(x�vs ,

→
π �vs)

` sat-pre (x ,
→
π) ⇒ ex(x�vs ,

→
π �vs) = (ex(x ,

→
π))�vs

Note that in the theorems above that relate executing a concrete action sequence and
its projection, there is the condition sat-pre (x ,

→
π). If this condition does not hold,

some actions in the concrete action sequence whose preconditions are not satisfied
can have their preconditions satisfied after projection; the projection would then be
an incorrect presentation. This could lead to a different execution outcome than the
projection of the concrete execution outcome, i.e. ex(x�vs ,

→
π �vs) = (ex(x ,

→
π))�vs

does not hold unconditionally. This condition is formally defined as follows.

sat-pre (x ,(p,e)::
→
π) ⇐⇒

p v x ∧ sat-pre (state-succ x (p,e),
→
π)

sat-pre (x ,[]) ⇐⇒ T

An important way to capture structure in factored systems is state-variable de-
pendency analysis, which can be used to obtain projections that are very useful in
compositional reasoning, e.g. projections on sets of variables that are closed under
mutual dependency. Also in many cases upper-bounding algorithms rely on the de-
pendency graph, a concept defined as follows.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 13

v3

v1 v2

(a)

{v3}

{v1, v2}

(b)

Fig. 3: (a) the dependency graph of δ from Example 1, and (b) a lifted dependency
graph of δ. Actions induce edges in (a): for example, v1 and v2 co-occur in action
effects, while v3 only happens to be in the precondition.

Definition 7 (Dependency). A variable v2 is dependent on v1 in δ (written v1→v2) iff
one of the following statements holds: 3 (i) v1 is the same as v2, (ii) there is (p, e) ∈ δ
such that v1 ∈ D(p) and v2 ∈ D(e), or (iii) there is a (p, e) ∈ δ such that both v1 and
v2 are in D(e). A set of variables vs2 is dependent on vs1 in δ (written vs1→vs2) iff:
(i) vs1 and vs2 are disjoint, and (ii) there are v1 ∈ vs1 and v2 ∈ vs2, where v1→v2.

Definition 8 (Dependency Graph). This graph, sometimes called the causal graph,
was described independently by Knoblock [35] and then Williams an Nayak [55].
GD(δ) is a dependency graph of δ iff (i) its vertices are bijectively labelled by variables
from D(δ), and (ii) it has an edge from vertex u1 to u2 iff v1→v2, where v1 and v2
are the labels of u1 and u2, respectively.

Definition 9 (Lifted Dependency Graph). GVS is a lifted dependency graph of δ iff
(i) its vertices are bijectively labelled by members of a partition of D(δ), and (ii) it
has an edge from vertex u1 to u2 (labelled by vs1 and vs2, respectively) iff vs1→vs2.

Example 4. Figure 3a and Figure 3b show the dependency graph and a lifted depen-
dency graph of δ from Example 1.

We formalised dependency between variables and dependency between sets of
variables as follows.

HOL4 Definition 7 (Dependency). For two variables v1 and v2, we define depen-
dency as4

v1 → v2 ⇐⇒
(∃ p e.

(p,e) ∈ δ ∧
(v1 ∈ D(p) ∧ v2 ∈ D(e) ∨ v1 ∈ D(e) ∧ v2 ∈ D(e))) ∨

v1 = v2

For sets of variables vs1 and vs1, we define

vs1 → vs2 ⇐⇒
∃ v1 v2. v1 ∈ vs1 ∧ v2 ∈ vs2 ∧ DISJOINT vs1 vs2 ∧ v1 → v2

3 Our definition is equivalent to those in [35, 55] in the context of AI planning.
4 The definition of → has an implicit δ parameter; however, we hide it using the ad hoc overloading

ability in HOL.

14 Mohammad Abdulaziz et al.

In the above defintion, DISJOINT is a predicate that, given two sets, returns
true if they share no elements. In HOL, we formalise acyclic dependency graphs as
topologically sorted lists of sets of state variables. Below is the formal definition of a
lifted dependency DAG. It is an instantiation of top-sorted-abs, where the relation
that induces the digraph is the dependency relation between variables.

HOL4 Definition 8 (Lifted Dependency DAG).

dep-DAG δ AVS ⇐⇒
D(δ) =

⋃
(set AVS) ∧ ALL-DISTINCT AVS ∧

ALL-DISJOINT AVS ∧
top-sorted-abs (λ vs1 vs2. vs1 → vs2) AVS

In the above definition the predicates ALL-DISTINCT and ALL-DISJOINT re-
turn true if all members of a given list are pairwise distinct and pairwise disjoint,
respectively.

4.2 Upper-Bounding the Diameter using Recurrence Diameters

Previous attempts to employ the compositional approach to upper-bound the diameter
computed an upper bound on the diameter of abstractions and then combined them
into an upper bound on the diameter of the concrete system. The approaches in [8, 47]
used the recurrence diameters of abstractions of the system at hand to upper-bound
the concrete system diameter. The recurrence diameter is the length of the longest
simple path in the digraph modelling the state space. This can be formally defined as
follows.

Definition 10 (Recurrence Diameter). Let distinct(x,
→
π) denote that all states tra-

versed by executing
→
π at x are distinct states.

rd(δ) = max
x∈U(δ)

max
→
π∈δ∗

max{|→π | | distinct(x,
→
π)}

It should be clear that the recurrence diameter is an upper bound on the diameter
and that it can be exponentially larger than the diameter.

Example 5. Consider δ from Example 1. The recurrence diameter of δ is three since
the state space of δ has a simple path with four different states in it. In particular the
path between states {v1, v2, v3} and {v1, v2, v3} has three actions.

The recurrence diameter can be exponentially (in the number of state variables)
larger than the diameter. For instance consider δ�{v1,v2} from Example 3. The diam-
eter of that projection is one, since its state space is the clique shown in Figure 2
and accordingly any state can be reached from any other state in one transition. One
the other hand the recurrence diameter is three since there are multiple paths in that
state space with four different states.

Two common features of these approaches are:

(i) they introduced an algorithm that maps every dependency graph to a polynomial
in the recurrence diameters of abstractions, such that the value of that polynomial
is an upper bound on the diameter.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 15

(ii) that polynomial is computed by an algorithm defined recursively “bottom-up” on
acyclic dependency graphs (or equivalently, design netlists).

In this section we review the bottom-up algorithm from [8, 47] (Msum), which is
defined as a polynomial generator recursively defined on acyclic dependency graphs.
We then review top-down algorithm from [3] (Nsum) that does the recursion in the
opposite direction.

4.2.1 The Bottom-Up Approach

Before we model the bottom-up calculation, we need to define the concepts of ances-
tors and leaves.

Definition 11 (Leaves). We define the set of leaves leaves(GVS) to contain those
vertices of GVS from which there are no outgoing edges.

Definition 12 (Ancestors). We write ancestors(vs) to denote the set of ancestor
vertices of vs in GVS. It is the set {vs0 | vs0 ∈ GVS ∧ vs0→+vs}, where→+ is the
transitive closure of→.

Definition 13 (Bottom-Up Acyclic Dependency Compositional Bound).

M〈b〉(vs, δ,GVS) = b(δ�vs) + (1 + b(δ�vs))
∑

a∈ancestors(vs)

M〈b〉(δ�a)

Then, let Msum〈b〉(δ,GVS) =
∑

vs∈leaves(GVS) M〈b〉(vs, δ,GVS).

The functional parameter b is used to bound abstract subproblems, GVS is a lifted
dependency graph of δ used to identify abstract subproblems, δ is the system of inter-
est. Valid instantiations of b are the recurrence diameter, used in [8], and the size of
state space (e.g. worst case is 2|D(δ)|), used in [47]. Also, Msum is recursively defined
on the structure of GVS, and accordingly it is only well-defined if GVS is a DAG. In
[8], it was shown that Msum〈rd〉 can be used to upper-bound the diameter, in case δ
has an acyclic lifted dependency graph. A reformulation of Theorem 1 from [8] is as
follows.

Theorem 1. For any factored representation δ with acyclic lifted dependency graph
AVS, d(δ) ≤ Msum〈rd〉(δ, AVS).

The following example illustrates the operation of Msum.

Example 6. Figure 4 shows a lifted dependency DAG, AVS, of some factored system
δ. Since AVS is a DAG, this implies that for 1 ≤ i ≤ 4, the set of variables vsi
is closed under mutual dependency, and D(δ) =

⋃
vsi. Given b, and letting bi be

b(δ�vsi) and M〈b〉(vsi, δ, AVS) = Mi, we have

(i) M1 = b1,
(ii) M2 = b2,

(iii) M3 = b3 + M1 + b3M1 = b3 + b1 + b1b3,
(iv) M4 = b4 + (1 + b4)(M1 + M2 + M3)

= 2b1 + b2 + b3 + b4 + b1b3 + 2b1b4 + b2b4 + b3b4 + b1b3b4.

16 Mohammad Abdulaziz et al.

vs1

vs2vs3

vs4

Fig. 4: A lifted dependency graph for a factored digraph that has four sets of variables
closed under mutual dependency.

Since vs4 is the only leaf in the dependency graph, the polynomial evalated by Msum
will be M4.

The previous example should make it clear that Msum can be viewed as a poly-
nomial generating function recursively defined on a DAG. The terms of the poly-
nomial that Msum returns depends only on the structure of AVS (i.e. the number
of vertices and their connectivity), regardless of δ or the values of b on different
projections. However, Msum has a problem: it repeatedly adds the terms M〈b〉(vsi)
as many times as there are children for vsi. Except for the first M〈b〉(vsi) term it
adds, all those terms are redundant as we show in the next section. We also note
that the function Msum is monotonic: for a bounding function b1 that bounds b2,
Msum〈b2〉(δ, AVS) ≤ Msum〈b1〉(δ, AVS) holds.

4.2.2 The Top-Down Approach

In this section we review the top-down algorithm. From a mechanisation perspective,
an advantage of the top-down algorithm is that it is easy to formally verify as an
upper-bounding algorithm for the diameter. It also avoids the redundant terms high-
lighted in the previous section, and was experimentally shown in [3] to be tighter than
the bottom-up algorithm.

Definition 14 (Acyclic Dependency Compositional Bound).

N〈b〉(vs, δ,GVS) = b(δ�vs)(1 +
∑

c∈childrenGVS (vs)

N〈b〉(c, δ,GVS))

Then, let Nsum〈b〉(δ,GVS) =
∑

vs∈GVS N〈b〉(vs, δ,GVS).

Nsum is recursively defined on the structure of GVS, and accordingly it is only well-
defined if GVS is a DAG. We note that Nsum is also monotonic: for a bounding func-
tion b1 that is an upper bound on another bounding function b2, Nsum〈b2〉(δ, AVS) ≤
Nsum〈b1〉(δ, AVS) holds, for an acyclic dependency graph AVS.

Theorem 2. For any factored representation δ with an acyclic lifted dependency
graph AVS, d(δ) ≤ Nsum〈rd〉(δ, AVS).

We discuss the formal proof of this theorem in the next section. However, we
now give an example that contrasts the bounds computed by Nsum〈b〉 versus the ones
computed using Msum〈b〉.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 17

Example 7. Again we refer to AVS from Figure 4. Given a topological property b,
and letting b(δ�vsi) be bi and N〈b〉(vsi, δ, AVS) = Ni, we have

(i) N4 = b4,
(ii) N3 = b3 + b3b4,

(iii) N2 = b2 + b2b4,
(iv) N1 = b1+b1N3+b1N4 = b1+b1b3+b1b3b4+b1b4, and the polynomial returned

by Nsum is
(v) Nsum〈b〉(δ, AVS) = b1 + b2 + b3 + b4 + b1b3 + b1b4 + b2b4 + b3b4 + b1b3b4.

The value of Msum〈b〉 has an extra b1 term and an extra b1b4 term, over that of
Nsum〈b〉. This is because Msum〈b〉 counts every ancestor vertex in the lifted depen-
dency graph as many times as the size of its posterity.

5 Formally Verifying the Top-Down Algorithm

In this section we prove the validity of Nsum〈rd〉 as an upper bound on the diameter in
the case of an acyclic dependency graph. We first discuss the way we formally define
the top-down algorithm. We then discuss the proof, where we prove that Nsum〈rd〉
upper-bounds the diameter indirectly. In the proof, we first define the sublist diameter
(denoted by `), an upper bound on the diameter and a lower bound on the recurrence
diameter. We then show that the sublist diameter can be compositionally bounded by
Nsum〈`〉 in case of an acyclic dependency graph. Theorem 2 then follows since Nsum
is monotonic and since the sublist diameter upper-bounds the diameter and lower
bounds the recurrence diameter.

5.1 Formally Defining the Top-Down Algorithm

The first step in defining the top-down algorithm is by defining the following generic
algorithm, defined on DAGs encoded as topologically sorted lists.

HOL4 Definition (Weightiest Path).

wp R w g f u1 (u2 ::A) =
if R u1 u2 then

g (f (w u1) (wp R w g f u2 A)) (wp R w g f u1 A)
else wp R w g f u1 A

wp R w g f u1 [] = w u1

This algorithm is a generalisation of an algorithm that computes the longest path in
a DAG starting at a vertex u1 . It takes as an argument the relation that induces the
DAG R, a weighing function w that assigns a weight to every vertex in the DAG, and
two functions that combine the weights: f which combines the weights of vertices
on one path to compute the path weight; and g which combines weights of different
paths, as well as the vertex of interest u1 and the DAG A.

Commonly occurring weight combination functions have the following mono-
tonicity properties.

18 Mohammad Abdulaziz et al.

geq-arg f ⇐⇒ ∀ x y. x ≤ f x y ∧ y ≤ f x y

increasing f ⇐⇒
∀ e b c d. e ≤ c ∧ b ≤ d ⇒ f e b ≤ f c d

The previous definitions describe different notions of functions whose value is at
least as large as their arguments and functions that are non-decreasing. If the weight
combination functions f and g have those properties, the following monotonicity
properties hold for the abstract weighted longest path function.

HOL4 Proposition 1.

` geq-arg g ⇒ w u ≤ wp R w g f u A

HOL4 Proposition 2.

` geq-arg f ∧ geq-arg g ∧
(∀ u. u ∈ set A ⇒ ¬R u u) ∧ R u2 u1 ∧
u1 ∈ set A ∧ top-sorted-abs R A ⇒

f (w u2) (wp R w g f u1 A) ≤ wp R w g f u2 A

HOL4 Proposition 3.

` increasing f ∧ increasing g ∧
(∀ u. u ∈ set A ⇒ w1 u ≤ w2 u) ∧ w1 u ≤ w2 u ⇒

wp R w1 g f u A ≤ wp R w2 g f u A

One way to interpret N〈b〉(vs, δ, AVS) is as a function that computes the weights
of every path that starts with vs in the acyclic dependency graph AVS, and then adds
all of the path weights. Every path is given a weight that depends on the weights
of the vertices and the number of edges that it traverses. The weight of a vertex
vs ∈ AVS is b(δ�vs) and the weight of a path is the product of the weights of its
vertices. Thus N can be defined as the following instance of wp. The relation that
induces the digraph is the dependency relation between variables. The functions for
combining node weights g and f are instantiated with addition and multiplication,
respectively.5

HOL4 Definition 14 (Acyclic Dependency Compositional Bound).

N〈b〉(vs) =
wp (λ vs1 vs2. vs1 → vs2) (λ vs. b(δ�vs)) (+) (×) vs AVS

We note that the reason we defined wp in such a generic way is to be able to
factor what is common between N and the compositional bounding function that
exploits acyclicity in state space (see Section 6) and yet accommodate the difference
between them. The two functions operate on DAGs induced by different relations,
weigh vertices with different functions, and combine those weights in different ways.

5 N has δ and AVS parameters, but we hide them with HOL’s ad hoc overloading ability.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 19

5.2 The Sublist Diameter

Definition 15 (Sublist Diameter). Recall that a list l′ is a sublist of l, written l′ �· l,
iff all the members of l′ occur in the same order in l. The sublist diameter, `(δ), is the
length of the longest shortest equivalent sublist to any execution

→
π ∈ δ∗ starting at

any state x ∈ U(δ). Formally,

`(δ) = max
x∈U(δ)

max
→
π∈δ∗

min{|→π
′
| | →π

′
�· →π ∧→π (x) = →π

′
(x)}

The sublist diameter is formalised as follows:

HOL4 Definition 15 (Sublist Diameter). We first define the sublist relation between
lists as follows:

[] �· l1 ⇐⇒ T
h:: t �· [] ⇐⇒ F
x :: l1 �· y :: l2 ⇐⇒ x = y ∧ l1 �· l2 ∨ x :: l1 �· l2

Based on that, the sublist diameter is defined as:

`(δ) = max {min Π�·(x ,
→
π) | x ∈ U(δ) ∧ →

π ∈ δ∗ }

where Π�· is defined as

Π�·(x ,
→
π) = { |→π

′
| | ex(x ,

→
π
′
) = ex(x ,

→
π) ∧ →

π
′
�· →π }

The way we define the sublist diameter resembles the way we defined the diam-
eter. We note however that in Π�· we need not add the condition on the equivalent
action sequences to be valid action sequences from δ∗, since this is implied by the
fact that they are also sublists of the given action sequence

→
π .

As a sanity check to verify that our definition of the sublist diameter has the
desired semantics, we prove the following theorem. This theorem says that any valid
action sequence has a sublist of it that achieves the same execution outcome, and
whose length is bounded by the sublist diameter.

` FINITE δ ∧ x ∈ U(δ) ∧ →
π ∈ δ∗ ⇒

∃→π
′
. ex(x ,

→
π) = ex(x ,

→
π
′
) ∧ →

π
′
�· →π ∧ |→π

′
| ≤ `(δ)

Also, we prove the following theorem to aid us in deriving the compositional up-
per bound on the sublist diameter. It states a sufficient condition for upper-bounding
the sublist diameter: if for some constant k , there is a sublist of every valid action
sequence that achieves the same execution outcome whose length is bounded by k ,
then the sublist diameter is bounded by k .

` FINITE δ ∧
(∀→π x.

x ∈ U(δ) ∧ →
π ∈ δ∗ ⇒

∃→π
′
. ex(x ,

→
π) = ex(x ,

→
π
′
) ∧ →

π
′
�· →π ∧ |→π

′
| ≤ k) ⇒

`(δ) ≤ k

20 Mohammad Abdulaziz et al.

An important feature of the sublist diameter is that it is a lower bound on the
recurrence diameter and an upper bound on the diameter. To show that in HOL we
first formalise the recurrence diameter. The recurrence diameter is formalised in a
significantly different way from the diameter, since it is best specified in terms of
paths of states, and because we do not need to nest max and min. The recurrence
diameter is formalised as follows:
HOL4 Definition 10 (Recurrence Diameter).

rd(δ) = max { |p| − 1 | valid-path δ p ∧ ALL-DISTINCT p }
where

valid-path δ [] ⇐⇒ T
valid-path δ [x] ⇐⇒ x ∈ U(δ)
valid-path δ (x1 :: x2 :: rest) ⇐⇒

x1 ∈ U(δ) ∧ (∃π. π ∈ δ ∧ ex(x1 ,[π]) = x2) ∧
valid-path δ (x2 :: rest)

The predicate valid-path indicates that a certain list of states can be an execution trace
of a valid action sequence in the given system, and the predicate ALL-DISTINCT
indicates that all members of a certain list are distinct.

Based on this formalisation of the recurrence diameter, the bounding relations
between the diameter, sublist diameter and the recurrence diameter are formalised in
the following theorem.
HOL4 Theorem.
` FINITE δ ⇒ d(δ) ≤ `(δ) ∧ `(δ) ≤ rd(δ)

In addition to being a lower bound on the recurrence diameter, the sublist diam-
eter can be exponentially smaller than the recurrence diameter. This is because of a
rather interesting fact: the value of sublist diameter depends on the factored represen-
tation. Two factored representations of the same state space can have different sublist
diameters. This is in stark contrast to the diameter and recurrence diameter, neither
of which is sensitive to the form of the factored representation. The following exam-
ple highlights that difference between the subslist diameter and the other diameter
functions.
Example 8. Consider δ�{v1,v2} from Example 3 and δ1 = {k1�{v1,v2}, k2�{v1,v2},
k3�{v1,v2}, k4�{v1,v2}}. Any action in δ1 has an equivalent action in δ�{v1,v2} in
terms of execution outcome, and vice versa. Accordingly, G(δ1) and G(δ�{v1,v2})
are identical, i.e. δ1 and δ�{v1,v2} have identical state spaces, and they have equal
diameters and recurrence diameters. In particular d(δ1) = d(δ�{v1,v2}) = 1, and
rd(δ1) = rd(δ�{v1,v2}) = 3.

On the other hand, `(δ1) = 1, because for any non empty action sequence
→
π ∈ δ1

∗, the last action π in
→
π reaches the same state as

→
π , and [π] �· →π . In

contrast, `(δ�{v1,v2}) = 3, since no shorter sublist of the action sequence [p1�{v1,v2};
p2�{v1,v2}; p3�{v1,v2}] starts at {v1, v2} and results in {v1, v2}.

Although we initially defined the sublist diameter as a tool for proving Theorem 2,
the previous example shows that, instead of the recurrence diameter, the sublist diam-
eter can be used as a base case function with the top-down approach to upper-bound
the diameter. This can potentially yield exponentially tighter bounds.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 21

w x

v y z

(a)

Fig. 5: The dependency graph of the system in Example 9.

5.3 Validity of Top-Down Compositional Bounding with the Sublist Diameter

It is already established that the sublist diameter is an upper bound on diameter,
d(δ) ≤ `(δ), and that the sublist diameter is a lower bound on the recurrence diameter
`(δ) ≤ rd(δ). We noted previously that Nsum is monotonic, in the sense that if b1
upper bounds b2 then Nsum〈b2〉(δ, AVS) ≤ Nsum〈b1〉(δ, AVS). With those results in
hand, Theorem 2 follows straightforwardly from the following lemma.

Lemma 1. For any factored system δ with an acyclic lifted dependency DAG AVS,
`(δ) ≤ Nsum〈`〉(δ, AVS).

Our proof of Lemma 1 depends on the following argument. Consider a set of
variables vs with only incoming dependencies from all the state variables in a system
δ. For some

→
π ∈ δ∗ suppose we remove actions from the projected action sequence

→
π �vs , while preserving its execution outcome in δ�vs . In other words, we remove
some δ�vs -redundant actions from

→
π �vs . Due to the dependency structure relating to

vs , that shortened projected action sequence can be “stitched” back into an execution
that achives the outcome of

→
π in δ. Moreover, that stiching operation produces an

execution that is shorter than
→
π , because the δ�vs -redundant actions remain removed.

This stitching process is formalised using a stitching function, H, the details of which
are given below.

HOL4 Definition (Stitching Function).

(π′::
→
π
′
) H
vs
(π::

→
π) =

if varset-action (π,vs) then

if π′ = π�vs then π::
→
π
′
H
vs

→
π else (π′::

→
π
′
) H
vs

→
π

else π:: (π′::
→
π
′
) H
vs

→
π

[] H
vs

→
π = FILTER (λπ. ¬varset-action (π,vs))

→
π

(π′::
→
π
′
) H
vs
[] = []

where varset-action is defined as follows

varset-action ((p,e),vs) ⇐⇒ D(e) ⊆ vs

22 Mohammad Abdulaziz et al.

In words, the stitching function uses the left-hand list, π′ ::
→
π
′
, as a guide. The right-

hand list of “unprimmed” actions, π ::
→
π , is filtered, with each action in the left-hand

list meant to have a corresponding action in the right-hand list. The usage of the
stitching function is illustrated in the following example.

Example 9. Consider the following factored system, whose dependency graph is
shown in Figure 5a.

{
π1 = (∅, {v3}), π2 = ({v3}, {v4}), π3 = ({v3}, {v1}), π4 = ({v3}, {v2}),
π5 = ({v4}, {v1}), π6 = ({v2, v4}, {v5}), π7 = ({v3}, {v4, v5})

}

D(δ) = c ∪ p, where c = {v1, v4, v5} are called the “child” variables, and p =
{v2, v3}, and c 6→ p are called the “parent” variables. In δ, the actions π2, π3,
π5, π6, π7 are c-actions, and π1, π4 are p-actions. An action sequence

→
π ∈ δ∗

is [π1;π1;π2;π3; π4;π4;π5;π6] that reaches the state {v1, v2, v3, v4, v5} from {v1,
v2, v3, v4, v5}. When

→
π is projected on c it becomes [π2�c;π3�c;π5�c;π6�c], which

is in (
∗
δ�c). A shorter action sequence,

→
π c, achieving the same result as

→
π �c is

[π2�c;π6�c]. Since
→
π c is a sublist of

→
π �c, we can use the stitching function to ob-

tain a shorter action sequence in δ∗ that reaches the same state as
→
π . In this case,

→
π cH

c

→
π is [π1;π1;π2;π4;π4;π6]. The second step is to contract the pure p segments

which are [π1;π1] and [π4;π4], which are contracted to [π1] and [π4], respectively.
The final constructed action sequence is [π1;π2;π4;π6], which achieves the same
state as

→
π .

We say that a system that exhibits the situation above, that is, having a set of vari-
ables in its domain with only incoming dependencies, has a Parent-Child Structure
and this is formalised as follows.

HOL4 Definition (Parent-Child Structure).

child-parent-rel (δ,vs) ⇐⇒ vs 6→ vs

The definition above says that δ exhibits a “parent-child” dependency structure, where
vs is the “child”, and the set vs is the “parent”.6

The formalised lemma stating the aforementioned functionality of the stitching
function is as follows. Its proof script is 1300 lines long, with comments, and it is our
main tool to formally prove the validity of Nsum〈`〉 as a bound.

HOL4 Proposition 4.

` child-parent-rel (δ,vs) ∧ x ∈ U(δ) ∧ no-effectless-act
→
π ∧

→
π
′
�· →π �vs ∧

→
π ∈ δ∗ ∧ (ex(x ,

→
π))�vs = ex(x�vs ,

→
π
′
) ∧

sat-pre (x ,
→
π) ∧ sat-pre (x ,

→
π
′
) ⇒

ex(x ,
→
π
′
H
vs

→
π) = ex(x ,

→
π)

6 Note that we use HOL4’s overloading capacity to hide the δ relative to whose domain the complement
of vs is taken, i.e. D(δ) \ vs is written as vs .

Formally Verified Algorithms for Upper-Bounding State Space Diameters 23

In the previous statement, the predicate no-effectless-act
→
π asserts that the ac-

tion sequence has no actions with empty effects. In the proof of Lemma 1, for a lifted
dependency DAGAVS, we take every set of variables p ∈ AVS, and remove all redun-
dant actions whose effects are confined to p (i.e. p-actions). We then use the stitching
function as our main proof tool to perform the action removal, as we describe in detail
below.

To formalise the removal of p-actions, we define the following relation, which
generalises the parent-child structure.

HOL4 Definition (Generalised Parent-Child Structure). For a factored transition
system δ and two sets of variables, corresponding to the “parent” p and “child” c, the
generalised parent-child relation holds between p and c iff (i) c 6→ p, (ii) p 6→ (p ∪ c),
and (iii) no bidirectional dependencies exist between any variable in c and (p ∪ c).
Formally:

gen-parent-child (δ,p,c) ⇐⇒
DISJOINT p c ∧ c 6→ p ∧ p 6→ p ∪ c ∧
∀ v1 v2. v1 ∈ c ∧ v2 ∈ p ∪ c ⇒ v1 6→ v2 ∨ v2 6→ v1

Given the previous definition, the following lemma formally describes the process
of removing redundant actions affecting a set of variables p ∈ AVS.

Lemma 2. Let n(vs,
→
π) be the number of vs-actions contained within

→
π . Consider

δ, in which the generalised parent-child relation holds between sets of variables p
and c. Then, any action sequence

→
π has a sublist

→
π
′

that reaches the same state as
→
π starting from any state such that: n(p,

→
π
′
) ≤ `(δ�p)(n(c,

→
π
′
) + 1) and n(p,

→
π
′
) ≤

n(p,
→
π).

A formal statement of that lemma follows:

HOL4 Lemma 2.

` FINITE δ ∧ x ∈ U(δ) ∧ →
π ∈ δ∗ ∧ gen-parent-child (δ,p,c) ⇒

∃→π
′
.

n(p,
→
π
′
) ≤ `(δ�p) × (n(c,

→
π
′
) + 1) ∧ →

π
′
�· →π ∧

n(D(δ) \ p,
→
π
′
) ≤ n(D(δ) \ p,

→
π) ∧ ex(x ,

→
π
′
) = ex(x ,

→
π)

where

n(p,
→
π) = |FILTER (λπ. varset-action (π,p))

→
π |

Proof. The proof of Lemma 2 is constructive. Take
→
π c to be a contiguous fragment

of
→
π that has no c-actions in it. We shall write D as shorthand for D(δ) and

→
π
′
c as

shorthand for the execution
→
π pH

p

→
π c�D\c. From HOL4 Proposition 4 it follows that

→
π
′
c achieves the same D \ c assignment as

→
π c. Precisely,

→
π
′
c(x)�D\c =

→
π c(x)�D\c.

By definition
→
π
′
c is a sublist of

→
π c satisfying the length condition n(p,

→
π
′
c) ≤ `(δ�p).

Moreover, there is an action sequence
→
π p such that

→
π p(x) =

→
π c�p(x) satisfying

the length bound |→π p| ≤ `(δ�p) and the sublist property
→
π p �·

→
π c�p. Recall,

→
π c

24 Mohammad Abdulaziz et al.

has no c-actions, and therefore there can be no changes to the truth assignments of
c variables induced in δ when executing

→
π c. The preconditions on c variables in

→
π
′
c

actions are therefore all in agreement. Consequently, a concrete execution
→
π
′
c H
D\c

→
π c

achieves the same result as
→
π c, but with at most `(δ�p) p-actions. We can therefore

replace
→
π c by that reconstructed execution.

The above reconstruction can be used to replace each contiguous
→
π c fragment in

the concrete execution
→
π . That process terminates with an action sequence

→
π
′

that
has at most `(δ�p)(n(c,

→
π)+1) p-actions. That statement is justified by the following

HOL4 lemma, where list-frag (l1,l2) means that list l2 is a contiguous sublist of l1.

` |FILTER P1 l | ≤ k1 ∧ (∀ x. x ∈ set l ⇒ P1 x ⇒ ¬P2 x) ∧
(∀ l ′.

list-frag (l ,l ′) ∧ EVERY (λ x. ¬P1 x) l ′ ⇒
|FILTER P2 l ′| ≤ k2) ⇒

|FILTER P2 l | ≤ (k1 + 1) × k2

Because
→
π
′

is the result of consecutive applications of the stitching function, it is a
sublist of

→
π . The construction of

→
π
′

can only remove p-actions, leaving the number
of c-actions equal to their number in

→
π .

We now describe how we use that result to prove Lemma 1, the main lemma
stating the validity of using Nsum to compositionally upper-bound the sublist di-
ameter. The main idea is to preform an induction on the acyclic lifted dependency
graph, where for every node p ∈ AVS, the redundant actions of p are removed us-
ing Lemma 2 after removing the redundant actions of its children c. We then use the
stitching function to reconcile both shortened action sequences. The formal statement
of Lemma 1 follows, along with a description of how it is proved.

HOL4 Lemma 1.

` FINITE δ ∧ dep-DAG δ AVS ⇒
`(δ) < SUM (MAP N〈`〉 AVS) + 1

Before we discuss the formal proof of the lemma above, we first introduce the
following notation. Let F (p, c,

→
π) be the witness action sequence of Lemma 2. We

know that:

– F (p, c,
→
π)(x) =

→
π (x),

– n(p, F (p, c,
→
π)) ≤ `(δ�p)(n(c,

→
π) + 1).

– F (p, c,
→
π) �· →π , and

– n(p, F (p, c,
→
π)) ≤ n(p,

→
π).

Proof of Lemma 1. Firstly, for notational brevity, for a set of variables vs , in the rest
of this proof we write N〈`〉(vs) as a short-hand for N〈`〉(vs, δ, AVS).

Our proof of this lemma follows a constructive approach where we assume we
have an action sequence

→
π ∈ δ∗ and a state x ∈ U(δ). The goal of the proof is to

Formally Verified Algorithms for Upper-Bounding State Space Diameters 25

find a witness sublist,
→
π
′
, of

→
π such that ∀ vs ∈ AVS. n(vs,

→
π
′
) ≤ N〈`〉(vs) and

→
π (x) =

→
π
′
(x). We proceed by induction on V (AVS) assuming it is topologically

sorted in a list lVS (without loss of generality since AVS is a DAG). The base case is
the empty list [], in which case D(δ) = ∅ and accordingly `(δ) = 0.

In the step case, we assume the result holds for any factored system for which l′VS
is a topologically sorted vertices list of one of its lifted dependency graphs. We then
show that it also holds for δ, a factored system whose dependency graph’s vertices
are topologically sorted into vs :: lVS. Let vs ≡

⋃
lVS. Since lVS is a topologically

sorted vertices list of a lifted dependency graph of δ�vs , the induction hypothesis ap-
plies. Accordingly, there is

→
π vs ∈ δ�vs

∗ such that
→
π vs(x) =

→
π �vs(x),

→
π vs �·

→
π �vs ,

and ∀ vs ′ ∈ lVS. n(vs ′,
→
π
′
) ≤ N〈`〉(vs ′, δ�vs , AVS) ≤ N〈`〉(vs ′). Since vs :: lVS is

topologically sorted, vs 6→ vs holds. Letting
→
π
′
vs =

→
π vs H

vs

→
π , from HOL4 Proposi-

tion 4 we have
→
π
′
vs(x) =

→
π (x). Furthermore, ∀vs ′ ∈ lVS. n(vs ′,

→
π
′
vs) ≤ N〈`〉(vs ′)

and
→
π
′
vs �·

→
π . Let C ≡

⋃
childrenAVS(vs). The last step in this proof is to show

that F (vs, C,
→
π
′
vs) is the required witness, which is justified because the generalised

parent-child relation holds for δ, vs and C. Since the relations =, ≤ and �· are
transitive, we have

– →π (x) = F (vs, C,
→
π
′
vs)(x),

– n(vs, F (vs, C,
→
π
′
vs)) ≤ `(δ�vs)(n(C,

→
π
′
vs)+1) = `(δ�vs)(

∑
c∈C n(c,

→
π
′
vs)+1),

– F (vs, C,
→
π
′
vs) �·

→
π , and

– n(vs, F (vs, C,
→
π
′
vs)) ≤ n(vs,

→
π
′
vs).

Since
∑

vs′∈lVS n(vs ′,
→
π
′
vs) = n(vs,

→
π
′
vs), then ∀ vs ′ ∈ lVS. n(vs ′,

→
π
′
vs) ≤ N〈`〉(vs ′)

and n(vs, F (vs, C,
→
π
′
vs)) ≤ `(δ�vs)(

∑
c∈C N〈`〉(c)) hold. Therefore F (vs, C,

→
π
′
vs)

is an action sequence demonstrating the needed bound.

6 Exploiting State Space Acyclicity

The practical utility of dependency graph based decompositions (like Nsum) provides
a good motivation to pursue other structures, like state space acyclicity. State space
acyclicity is independent of acyclicity in state-variable dependency. Thus, methods
previously developed cannot be used to exploit the former in compositional upper-
bounding. We demonstrate this using the well-studied hotel key protocol as a case-
study.

6.1 Hotel Key Protocol

We now consider the hotel key protocol from [33]. Reasoning about safe and unsafe
versions of this protocol is challenging for state-of-the-art AI planners and model-
checkers. For example, a version of the protocol was shown unsafe for an instance

26 Mohammad Abdulaziz et al.

; check in to a room (at reception), receiving a new key
({lk1,1}, {gk1,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk1,3, lk1,3, lk1,2, s1}),
({lk1,1}, {gk2,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk2,3, lk1,3, lk1,2, s1}),
({lk2,4}, {gk1,5, lk1,5, lk1,4, s2}), ({lk2,5}, {gk1,6, lk1,6, lk1,5, s2}),
({lk2,4}, {gk2,5, lk1,5, lk1,4, s2}), ({lk2,5}, {gk2,6, lk1,6, lk1,5, s2})
; enter a room with new key
({gk1,2}, {ck1,2, ck1,1, s1}), ({gk2,2}, {ck1,2, ck1,1, s1}),
({gk1,3}, {ck1,3, ck1,2, s1}), ({gk2,3}, {ck1,3, ck1,2, s1}),
({gk1,5}, {ck2,5, ck2,4, s2}), ({gk2,5}, {ck2,5, ck2,4, s2}),
({gk1,6}, {ck2,6, ck2,5, s2}), ({gk2,6}, {ck2,6, ck2,5, s2})

(a)
ck1,1ck1,2ck1,3

s1

gk1,2gk2,2gk1,3gk2,3

lk1,1lk1,2lk1,3

ck2,4ck2,5ck2,6

s2

gk1,5gk2,5gk1,6gk2,6

lk2,4lk2,5lk2,6

(b)
({lk1,1}, {gk1,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk1,3, lk1,3, lk1,2, s1}),
({lk1,1}, {gk2,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk2,3, lk1,3, lk1,2, s1}),
({gk1,2}, {ck1,2, ck1,1, s1}), ({gk2,2}, {ck1,2, ck1,1, s1}),
({gk1,3}, {ck1,3, ck1,2, s1}), ({gk2,3}, {ck1,3, ck1,2, s1})

(c)
({lk1,1}, {gk1,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk1,3, lk1,3, lk1,2, s1}),
({lk1,1}, {gk2,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk2,3, lk1,3, lk1,2, s1}),
({gk1,2}, {s1}), ({gk2,2}, {s1})

(d)
s1

gk1,2gk2,2gk1,3gk2,3

lk1,1lk1,2lk1,3

(e)

s1

gk1,2gk2,2

(f)

Fig. 6: (a) shows the actions of a transition system δ representing the hotel key pro-
tocol with 2 rooms, 2 guests and 3 keys per room; room 1 is associated with keys
1–3; room 2 with keys 4–6. (b) is the dependency graph for that system. (c) is the
projection of the system on an abstraction that models only the changes related to
room 1. (d) is the snapshot of δ�ROOM1 on CK1,2, an abstraction that only analyses
the changes related to room 1 when its door recognises key 2 as the current key. (e)
and (f) are the dependency graphs of snapshots that we use for illustrative purposes
in the examples.

with 1 room, 2 guests and 4 keys using a counterexample generator in [14]. The
problem becomes more challenging for the safe version of the protocol, where the
only feasible approach is using interactive theorem provers, as in [42].

We describe the factored transition system corresponding to that protocol. The
system models a hotel with R rooms, G guests, and K keys per room, which guests

Formally Verified Algorithms for Upper-Bounding State Space Diameters 27

can use to enter rooms (Figure 6 shows an example with R = 2, G = 2 and K = 3).
The state characterising propositions are: (i) lkr,k, reception last issued key k for
room r, for 0 < r ≤ R and (r − 1)K < k ≤ rK; (ii) ckr,k, room r can be accessed
using key k, for 0 < r ≤ R and (r−1)k < k ≤ rK; (iii) gkg,k, guest g has key k, for
0 < g ≤ G, 0 < k ≤ RK; and (iv) sr, is an auxiliary variable that means that room
r is “safely” delivered to some guest. The protocol actions are as follows: (i) guest g
can check-in to room r, receiving key k—({lkr,k1}, {gkg,k2 ,lkr,k2 ,lkr,k1 ,sr});
and (ii) where room r was previously entered using key k, guest g can enter room
r using key k′—({gkg,k′ ,lkr,k}, {ckr,k′ ,ckr,k,sr}). Thus, guests can retain keys
indefinitely, and there is no direct communication between rooms and reception.

For completeness, we note that this protocol was formulated in the context of
checking safety properties. Safety is violated only if a guest enters a room occupied
by another guest. Formally, the safety of this protocol is checked by querying if there
exists a room r, guest g and keys k 6= k′, so that lkr,k′ ∧ ckr,k ∧ gkg,k′ ∧ sr. The
initial state asserts that guests possess no keys, and the reception issued the first key
for each room, and each room opens with its first key. Formally, this is represented
by asserting lkr,(r−1)K ∧ ckr,(r−1)K is true for 1 ≤ r ≤ R, (r − 1)K < k ≤ rK,
and that all other state variables are false.

We adopt some shorthand notations in order to provide examples of concepts in
terms of the hotel key protocol. A variable name is written in upper case to refer to a
particular assignment, where the only variable that is true is given by the indices. For
example, the assignment {ck1,1,ck1,2,ck1,3}—indicating room 1 can be accessed
using key 2—is indicated by writing CK1,2. We refer to sets of variables by omit-
ting an index term. For example, lk1 indicates the variables {lk1,i | 1 ≤ i ≤ 3}.
The following examples illustrate the concepts of projection and state-variable de-
pendency in the context of the hotel key protocol.

Example 10. Consider the set of variables ROOM1 ≡ lk1 ∪ ck1 ∪ {gk1,2,gk1,3,
gk2,2,gk2,3}. The variables ROOM1 model system state relevant to the 1st hotel
room. Figure 6c shows the projected system δ�ROOM1.

Example 11. Figure 6b shows a dependency graph associated with the system from
Figure 6a. Let ROOM2 ≡ lk2∪ck2∪{gk1,5,gk1,6,gk2,5,gk2,6}. Figure 6b depicts
two connected components induced by the sets ROOM1 and ROOM2, respectively.
One lifted dependency graph would have exactly two unconnected vertices, one being
a contraction of the vertices from ROOM1, and the other a contraction of those from
ROOM2. Due to the disconnected structure of the dependency graph, intuitively the
sum of bounds for δ�ROOM1 and δ�ROOM2 can be used to upper-bound the diameter of
the concrete system.

6.2 State Space Acyclicity Compositional Bounding Constructs

State space acyclicity can be defined as follows.

Definition 16 (Acyclic Transition System). δ is acyclic iff ∀x, x′ ∈ U(δ). x 6= x′

then x 6 x′ or x′ 6 x.

28 Mohammad Abdulaziz et al.

To formalise state space acyclicity in HOL4, we again use top-sorted-abs to
represent the DAG modelling the state space. In this case, the relation that induces
the digraph is the successor relation on states.

HOL4 Definition 16 (Acyclic Transition System).

sspace-DAG δ
→
x ⇐⇒ set

→
x = U(δ) ∧ top-sorted-abs (succ δ)

→
x

where

succ δ x = state-succ x LδM \ {x }

In the next example we show that state space acyclicity is independent of acyclic-
ity in dependency between variables, and thus Nsum or other methods cannot be used
to exploit state space acyclicity for compositional upper-bounding.

Example 12. δ�ck1
is acyclic. For example, no state satisfying CK1,2 can be reached

from a state satisfying CK1,3. Now consider δ�ROOM1 from Example 10. The depen-
dency graph of δ�ROOM1 is comprised of one strongly connected component (SCC).
Thus, acyclicity in the assignments of ck1 cannot be exploited in δ�ROOM1 by analysing
its dependency graph.

To be able to exploit state space acyclicity, we now introduce a new abstraction
concept: snapshot. A snapshot models the system when we fix the assignment to a
subset of the state variables, removing actions whose preconditions or effects contra-
dict that assignment.

Definition 17 (Snapshot). We write |X| to denote the cardinality of the set X . For
states x and x′, let agree(x, x′) denote |D(x) ∩ D(x′)| = |x ∩ x′|, i.e. a variable
that is in the domains of both x and x′ has the same assignment in x and x′. For δ
and a state x, the snapshot of δ at x is

δ|•x≡ {(p, e) | (p, e) ∈ δ ∧ agree(p, x) ∧ agree(e, x)}�D(δ)\D(x)

Example 13. δ�ROOM1|•CK1,2
is shown in Figure 6d.

In HOL4 we model snapshotting as follows.

HOL4 Definition 17 (Snapshot). We first define the following relation between states

agree x1 x2 ⇐⇒
∀ v. v ∈ D(x1) ∧ v ∈ D(x2) ⇒ x1 ‘ v = x2 ‘ v

Based on that, a snapshot is defined as follows:

δ|•x = { (p,e) | (p,e) ∈ δ ∧ agree p x ∧ agree e x }

The relation agree indicates that two states assign all variables in the intersection
of their domains to the same values. A snapshot of a factored system δ on a state x is
the set of actions from δ whose preconditions are enabled by x and that if executed
they do not change the assignments of variables in the domain of x . The following
properties of the agreement relation between states and the snapshot abstraction are
sanity checks for the validity of our definitions.

` f1 v f2 ⇒ agree f1 f2

Formally Verified Algorithms for Upper-Bounding State Space Diameters 29

` →π ∈ δ∗ ∧ x ′ ∈ U(δ) ∧ x ∈ U(δ) ∧
(∀ p e. MEM (p,e)

→
π ⇒ agree e�vs x�vs) ∧ x ′�vs = x�vs ⇒

(ex(x ′,
→
π))�vs = x�vs

The second theorem above shows that if all actions in a sequence agree with a projec-
tion of an initial state, then the result of executing that action sequence on that state
will have the same assignment to the initially agreed upon variables.

We now investigate how such acyclicity can be used for bounding. Let b be an
arbitrary bounding function that satisfies d(δ) ≤ b(δ) for any δ. Consider a system
δ where for some variables vs we have that δ�vs is acyclic – i.e. the state space
of δ�vs forms a directed acyclic graph (DAG). In that case, we have that d(δ) ≤
Smax〈b〉(vs, δ), where Smax is a compositional bounding function defined as follows.

Definition 18 (Acyclic System Compositional Bound). Letting succ(x, δ) ≡ {x′ |
∃π ∈ δ.π(x) = x′}, S is

S〈b〉(x, vs, δ) = b(δ|•x) + max
x′∈succ(x,δ�vs)

(S〈b〉(x′, vs, δ) + 1)

Then, let Smax〈b〉(vs, δ) = max
x∈U(δ�vs)

S〈b〉(x, vs, δ).

S is only well-defined if δ�vs is acyclic. We only seek to consider and interpret Smax
in systems δ�vs where no execution can visit a state more than once. In that situation
Smax calculates the maximal cost of a traversal through the DAG formed by the state
space of δ�vs . Completing that intuition, take b(δ|•x) to be the cost of visiting a state
x, and let the cost of traversing an edge between states be 1. These ideas are made
concrete below, in Example 14.

Example 14. Since δ�ck1
is acyclic, and CK1,i ∈ U(δ�ck1

), then S〈d〉(CK1,i,ck1, δ)
is well-defined, for i ∈ {1, 2, 3}. Denoting d(δ|•CK1,i

) with d1,i and S〈d〉(CK1,i,ck1, δ)
with S1,i, we have S1,3 = d1,3 because succ(CK1,3, δ�ck1

) = ∅. We also have S1,2 =
d1,2+1+S1,3 = d1,2+1+d1,3 and S1,1 = d1,1+1+S1,2 = d1,1+1+d1,2+1+d1,3 =
d1,1 + d1,2 + d1,3 + 2.

To formalise the function S we again use wp. In this case, the relation that induces
the digraph is the successor relation on states. We note that in order for us to use
the monotonicity property of wp, the relation that induces the digraph needs to be
irreflexive, which is why the set of successors of a state succ is defined to not include
that state. For S, the vertex weight combination functions g and f are instantiated by
a function that chooses the maximum of two arguments and the addition function,
respectively. Formally this is defined as follows.7

HOL4 Definition 18 (Acyclic System Compositional Bound).

S〈b〉(x) = wp (succ δ�vs) (λ x. b(δ|•x)) MAX (λ x y. x + y + 1) x
→
x

The following theorem states the validity of using Smax to upper-bound the sublist
diameter in case of the presence of acyclicity in the state space.

7 S has vs , δ and
→
x parameters, but we hide them with HOL’s ad hoc overloading ability.

30 Mohammad Abdulaziz et al.

Theorem 3. If δ�vs is acyclic and b bounds `, then `(δ) ≤ Smax〈b〉(vs, δ).

A formal statement of that theorem in HOL4 is as follows.

HOL4 Theorem 3.

` FINITE δ ∧ sspace-DAG δ�vs
→
x ⇒

`(δ) ≤ max {S〈`〉(x ′) | x ′ ∈ U(δ�vs)}

The main structure of the formal proof of Theorem 3 is similar to that of Lemma 1.
We first prove the following lemma.

Lemma 3. For any δ and vs where δ�vs is acyclic, x ∈ U(δ), and
→
π ∈ δ∗, there is

→
π
′

such that
→
π (x) =

→
π
′
(x), |→π

′
| ≤ S〈`〉(x�vs , vs, δ), and

→
π
′
�· →π .8

A formal statement of that lemma is as follows.

HOL4 Lemma 3.

` FINITE δ ∧ sspace-DAG δ�vs
→
x ∧ x ∈ U(δ) ∧ →

π ∈ δ∗ ⇒
∃→π
′
. ex(x ,

→
π
′
) = ex(x ,

→
π) ∧ →

π
′
�· →π ∧ |→π

′
| ≤ S〈`〉(x�vs)

To prove that lemma we first define the function ∂ which gives the number of
changes in the assignments of a set of variables vs if an action sequence

→
π is executed

on a state x , as follows

HOL4 Definition (Subsystem Trace).

∂ (π::
→
π) vs x =

if (state-succ x π)�vs 6= x�vs then

state-succ x π:: ∂
→
π vs (state-succ x π)

else ∂
→
π vs (state-succ x π)

∂ [] vs x = []

The following propositions hold for ∂.

HOL4 Proposition 5.

` FINITE δ ∧ ∂
→
π vs x = [] ∧ sat-pre (x ,

→
π) ∧ x ∈ U(δ) ∧

→
π ∈ δ∗ ⇒
∃→π
′
.

ex(x�D(δ|•x�vs),
→
π) = ex(x�D(δ|•x�vs),

→
π
′
) ∧ →

π
′
�· →π ∧

|→π
′
| ≤ `(δ|•x�vs)

HOL4 Proposition 6.

` ∂
→
π vs x = x ′::

→
x ⇒

∃→π 1 π
→
π 2.→

π =
→
π 1 ++ π::

→
π 2 ∧ ∂

→
π 1 vs x = [] ∧

state-succ (ex(x ,
→
π 1)) π = x ′ ∧

∂
→
π 2 vs (state-succ (ex(x ,

→
π 1)) π) =

→
x

8 In the rest of this proof we omit the vs and/or δ arguments from ∂(, ,) and S as they do not change.

Formally Verified Algorithms for Upper-Bounding State Space Diameters 31

HOL4 Proposition 7.

` ∂ (
→
π 1 ++

→
π 2) vs x = ∂

→
π 1 vs x ++ ∂

→
π 2 vs (ex(x ,

→
π 1))

Proof of Lemma 3. The proof is by induction on ∂(x,
→
π). The base case, ∂(x,

→
π) =

[], is trivial. In the step case we have that ∂(x,
→
π) = x′ ::

→
x and the induction

hypothesis: for any x∗ ∈ U(δ), and
→
π
∗
∈ δ∗ if ∂(x∗,

→
π
∗
) =

→
x then there is

→
π ∗′

where
→
π
∗
(x∗) =

→
π ∗′(x∗) and |→π ∗′| ≤ S〈`〉(x∗�vs).

Since ∂(x,
→
π) = x′ ::

→
x , we have

→
π 1, π and

→
π 2 satisfying the conclusions of

HOL4 Proposition 6. Based on HOL4 Proposition 6 and HOL4 Proposition 7 we
have ∂(x′,

→
π 2) =

→
x . Accordingly, letting x∗, and

→
π
∗

from the inductive hypothesis
be x′, and

→
π 2, respectively, there is

→
π
′
2 such that

→
π 2(x

′) =
→
π
′
2(x) and |→π

′
2| ≤

S〈`〉(x′�vs).†

From HOL4 Proposition 6 and HOL4 Proposition 5 there is
→
π
′
1 where

→
π 1(x) =

→
π
′
1(x) and |→π

′
1| ≤ `(δ|•x�vs). Letting

→
π
′
≡ →π

′
1_π ::

→
π
′
2, from HOL4 Proposition 6

and † we have
→
π (x) =

→
π
′
(x) and |→π

′
| ≤ `(δ|•x�vs) + 1 + S〈d〉(x′�vs).‡

Lastly, from HOL4 Proposition 5 and HOL4 Proposition 6 we have x�vs =
→
π 1(x)�vs =

→
π
′
1(x)�vs and accordingly π�vs(x�vs) is equal to x′�vs . Based on that

we have x′�vs ∈ succ(x�vs , δ�vs). Then from HOL4 Proposition 2 and ‡ we have
|→π
′
| ≤ S〈d〉(x�vs).

Theorem 3 follows from Lemma 3 and Definitions 5 and 18.

7 Combining Acyclicity in Dependency and State Space: A Hybrid Algorithm

As we showed earlier, acyclicity in state-variable dependencies and acyclicity in the
state space are independent. Accordingly an algorithm that combines the exploitation
of both structures is needed. We now discuss our formal verification of the upper-
bounding algorithm HYB, which combines exploitation of acyclic variable depen-
dency with exploitation of acyclicity in state spaces. In [4] that algorithm was ex-
perimentally shown to compute much tighter bounds than Nsum, which already was
better than the state of the art. Combined with the SAT-based AI planner Madagas-
car [46], it enabled the automatic verification of the safety of problems that were open
(e.g. much larger instances of the hotel key protocol), and the generation of plans for
problems that are otherwise out of reach for Madagascar.

Theorem 4. Given that (i) Ω is an oracle that returns a set of strict subsets of D(δ),
where ∀vs ∈ Ω(δ).δ�vs is acyclic, and (ii) ch is an arbitrary choice function, we
have `(δ) ≤ HYB(δ).

Note that the sublist diameter ` is only computed for “base-case” problems –
i.e. problems that are not further decomposed. Also, note that in HYB, Smax is only
applied to the given transition system δ if there is no non-trivial projection (i.e.if
GD(δ) has one SCC), and ` is applied only to base-cases. This is because the runtime
of Smax can be linear in the state space of the concrete system, if its state space

32 Mohammad Abdulaziz et al.

Algorithm 1: HYB(δ)

Compute the dependency graph GD(δ) of δ and its SCCs
Compute the lifted dependency graph GVS
if 2 ≤ |GVS.V | return Nsum〈HYB〉(δ,GVS)
else if Ω(δ) 6= ∅ return Smax〈HYB〉(ch(Ω(δ)), δ)
else return `(δ)

is acyclic, which is unacceptable in our factored setting. This is shown in the next
example.

Example 15. For the hotel key system, D(δ) has the partition {ck1,ck2,lk1,lk2,
{gk1,2}, {gk1,3}, {gk1,5}, {gk1,6}, {gk2,2}, {gk2,3}, {gk2,5}{gk2,6}, {s1}, {s2}}.
Let Ω(δ) denote that set, excluding {s1} and {s2}. Note, ∀vs ∈ Ω(δ) we have that
δ�vs is acyclic. Consequently, we have that PUR(δ) evaluates after Πvs∈Ω(δ)|vs|
calls to Smax.

This computational burden is alleviated by applying Smax to abstract subsystems
obtained using projections that motivated Definition 14. Such abstractions can be
significantly smaller than the concrete systems, thus motivating a hybrid approach
that can exponentially reduce bound computation times.

Example 16. Consider applying the approach outlined in Example 11 to compute
PUR only on the abstractions δ�ROOM1 and δ�ROOM2. PUR(δ�ROOM1) can be evaluated
inΠvs∈Ω(δ�ROOM1)

|vs| calls to Smax, whereΩ(δ�ROOM1)={ck1,lk1, {gk1,2}, {gk1,3},
{gk2,2}, {gk2,3}}. The same observation can be made for the evaluation time of
PUR(δ�ROOM2). Thus the product expression in Example 15 is split into a sum if PUR
is called on projections.

Also note that the dependency graph GD(δ) is constructed and analysed with every
recursive call to HYB, as snapshotting in earlier calls can remove variable dependen-
cies as a result of removing actions, leading to the breaking of the SCCs in GD(δ), as
shown in Example 17.

Example 17. As shown in Figure 6b, the dependency graph of δ�ROOM1 has a single
SCC, and thus not susceptible to dependency analysis. Taking a snapshot of δ�ROOM1
at the assignment CK1,2 yields a system with one SCC in its dependency graph as
well, as shown in Figure 6e. However, taking the snapshot of δ�ROOM1|•CK1,2 at the
assignment {lk1,1,lk1,2,lk1,3}, denoted by LK1,2, yields a system with an acyclic
dependency graph as shown in Figure 6f.

7.1 Formal Verification of the Hybrid Algorithm

The hybrid algorithm HYB is characterised in HOL as follows:

HOL4 Lemma (The Hybrid Algorithm).

Formally Verified Algorithms for Upper-Bounding State Space Diameters 33

FINITE δ ∧
(∀ vs →x . (vs,

→
x) ∈ f2 δ ⇒ set

→
x = U(δ�vs)) ⇒

HYB f1 f2 δ =
if ∀ vs. vs ∈ set (f1 δ) ⇒ vs ⊂ D(δ) then

(let AVS = f1 δ in SUM (MAP N〈HYB〉 AVS))
else if

f2 δ 6= ∅ ∧
∀ vs →x x.

(vs,
→
x) ∈ f2 δ ∧ x ∈ set

→
x ⇒ δ|•x ⊂ δ

then
(let

(vs,
→
x) = CHOICE (f2 δ)

in
max {S〈HYB〉(x ′) | x ′ ∈ U(δ�vs)})

else `(δ)

It takes two functions f1 and f2 as arguments. The first function is an oracle that
given a transition system, returns a lifted dependency DAG of that system. The second
function is an oracle that returns a set of pairs, each of which has a strict subset of
the state variables of the given system, and the state space of the projection of the
system on that subset of the state variables. We note that proving the termination of
HYB is not trivial. In order to guarantee termination, we add the conditions that δ is
finite as well as that all the lifted dependency DAGs computed by f1 and the subsets
of the domain of δ computed by f2 provide non trivial decompositions of δ, i.e. they
are strict subsets.

To guide HOL4 to extract the right termination conditions we need to add redun-
dant if-then-else statements to the definition of HYB (not the characterisation), which
is a cumbersome process. Those if-then-else statements specify explicitly what the
termination conditions are, i.e. they specify constraints on the behaviour of the func-
tional parameters passed to N and S, as shown in the following definition.

HOL4 Definition (The Hybrid Algorithm).
HYB f1 f2 δ =
if FINITE δ then
if ∀ vs. vs ∈ set (f1 δ) ⇒ vs ⊂ D(δ) then

(let
AVS = f1 δ

in
SUM

(MAP
(N

(λ δ′.
if
∃ vs. vs ∈ set AVS ∧ δ′ = δ�vs

then
HYB f1 f2 δ′

else 0) δ AVS) AVS))

34 Mohammad Abdulaziz et al.

else if
f2 δ 6= ∅ ∧
∀ vs →x x.

(vs,
→
x) ∈ f2 δ ∧ x ∈ set

→
x ⇒ δ|•x ⊂ δ

then
(let

(vs,
→
x) = CHOICE (f2 δ)

in
max
{S-gen

(λ δ′.

if ∃ x. x ∈ set
→
x ∧ δ′ = δ|•x then

HYB f1 f2 δ′

else 0) vs
→
x δ x ′ |

x ′ ∈ U(δ�vs)})
else `(δ)

else 0

Lastly, proving the validity of the hybrid algorithm as an upper bound on the
sublist diameter, and accordingly the diameter, follows directly from HOL4 Lemma 1
and HOL4 Theorem 3.

HOL4 Theorem 4.

` FINITE δ ∧
(∀ δ′.

dep-DAG δ′ (f1 δ′) ∧
∀ vs →x . (vs,

→
x) ∈ f2 δ′ ⇒ sspace-DAG δ′�vs

→
x) ⇒

`(δ) ≤ HYB f1 f2 δ

An important gain we had from the formalisation process is that it guided us to
the explicit termination conditions for HYB.

8 Concluding Remarks

With this work we publish the details of the formal verification work behind a fruitful
collaboration between the disciplines of AI planning and mechanised mathematics.
In concluding, it is worth revisiting key results and observations made during our
formalisation efforts, and the motivation for mechanisation. From the point of view
of the interactive theorem-proving community, it is gratifying to be able to find and
fix errors in the modern research literature. The insights which led us to develop
the sublist diameter, and the top-down algorithm, followed preliminary attempts to
formalise results by Rintanen and Gretton in [47]. Those efforts, reported in [3],
uncovered an error in their theoretical claims, where they incorrectly state that the
diameter can be compositionally bounded using abstractions induced by acyclicity in
the dependency graph. Importantly, that error never shows up during experimentation,
where compositional bounding using the diameter yields admissible results on all of

Formally Verified Algorithms for Upper-Bounding State Space Diameters 35

thousands of diverse problems from planning benchmarks. Nonetheless such an error
cannot be tolerated in safety critical applications. This kind of elusive error makes
a strong case for the utility of mechanical verification, which identifies and helps
eliminate mistakes before they migrate into production systems.

It is vital that we give AI researchers assurances that their algorithms, theory
and systems are correct. For AI planning systems to be deployed in safety critical
applications and for autonomous exploration of space, they must not only be effi-
cient, and provably conservative in their resource consumption, but also correct. The
upper-bounding algorithms like the ones we formalise here underpin fixed-horizon
planning; indeed, they provide the fixed horizon past which an algorithm need not
search. If an autonomous vehicle exploring outer space implemented diameter-based
compositional bounding suggested by [47] to do its plan-search, that system could
incorrectly conclude that no plan exists.

Our experience mechanising results in AI planning allows us to provide insights
regarding the scalability of formalising AI planning algorithms. To formalise the
compositional algorithms we developed a library of HOL4 proof scripts that is around
14k lines long, including comments. The general organisation of the library is shown
in Figure 7 and the sizes and descriptions of important theories is in Table 1. The first
algorithm that we formalised was Nsum, and to do so we developed around 10k lines
of proof script. That script was developed in approximately six months. Our subse-
quent formalisation of Smax and HYB required an additional 2k lines of proof scripts
each. Each of those algorithms took around two and half weeks to formalise. This
productivity improvement follows because when we formalised Nsum, we developed
the majority of the needed formal background theory. That theory is leveraged in our
formalisation of other algorithms on factored transition systems.

We made a number of observations in our efforts that we believe provide insight
into how HOL4 can be improved. The feature of HOL4 that we would cite as the
most positive, is the ability to quickly modify existing tactics, or add new tactics,
since the entire system is completely implemented in SML. Also, automation tactics
in general are reasonable. Nonetheless, we think that other aspects of automation can
still be improved. Tasks which we found cumbersome and to which more automation
could be helpful include: (i) searching for theorems in the library, (ii) the generation
of termination conditions, and (iii) deriving the function form of relations for which
uniqueness properties exist. Another more general issue that we faced is the absence
of a mechanism akin to type classes in Isabelle/HOL, which could have allowed us
to reduce the repetition of theorem hypotheses.

Future work can leverage our work on propositionally factored systems in more
general settings, such as for systems in which the codomains of states are not nec-
essarily Boolean, finite or even countable. This raises the possibility of applying and
extending our algorithms and related proof scripts to hybrid systems. In particular, we
developed a large library describing factored transition systems. Much of the theory
in our library applies to factored systems that are not propositionally factored, and
therefore that theory can be used for verifying algorithms on hybrid systems. Here,
an interesting challenge would be extending the theory we developed to be capable of
representing actions whose preconditions and effects are functions in state variables,
versus assignments to state variables.

36 Mohammad Abdulaziz et al.

In terms of formally verifying AI planning algorithms, we have only scratched
the surface. For instance, when a tight bound for a planning problem is known, one
effective technique for finding a plan is to reduce that problem to SAT [46]. Pro-
posed reductions are constructive, in the sense that a plan can be constructed in linear
time from a satisfying assignment to a formula. A key recent advance in the setting
of planning-via-SAT has been the development of compact SAT-representations of
planning problems. Such representations facilitate more efficient search [46, 48]. In
future work, we would like to verify the correctness of both the reductions to SAT,
and the algorithms that subsequently construct plans from a satisfying assignment.

Fig. 7: The organisation of the different theories concerning factored transition sys-
tems. An edge from one theory to another indicates the dependence of the latter on
the former.

HOL4 Notation and Availability All statements appearing with a turnstile (`) are
HOL4 theorems, automatically pretty-printed to LATEX. All our HOL scripts, experi-
mental code and data are available from:
https://bitbucket.org/MohammadAbdulaziz/planning.git.

Acknowledgements We thank Daniel Jackson for suggesting applying diameter upper-
bounding on the hotel key protocol verification. We also thank Dr. Alban Grastien and
Dr. Patrik Haslum for their the very helpful discussions and insightful feedback which
they gave us through the entire project. Lastly, we thank the anonymous reviewers for
their detailed and helpful reviews.

https://bitbucket.org/MohammadAbdulaziz/planning.git

Formally Verified Algorithms for Upper-Bounding State Space Diameters 37

Theory Size (LOC) Description
actionSeqProcess 432 Theory on different functions that pro-

cess action sequences, e.g. remove ac-
tions without effects.

acycDepGraph 1587 Theory related to the top-down algo-
rithm.

acyclicity 130 Theory regarding acyclic digraphs rep-
resented as topologically sorted lists.

acycSspace 346 Theory related to the S-algorithm that
exploits acyclicity in the state space.

boundingAlgorithms 644 Theory related to the hybrid algorithm.
dependency 83 Basic results related to variable depen-

dency.
depGraphVtxCut 582 Results related to vertex cutting in the

dependency graph.
factoredSystem 1336 Basic results and definitions related to

factored transition systems.
instantiation 1007 Results related to instantiation of plan-

ning problems.
invariantsPlusOne 300 Theory related to the cardinality of sets

of states with SAS+ like invariant prop-
erties.

invariantStateSpace 121 A bound on the size of a state space of a
planing problem that has a SAS+ repre-
sentation derived invariant property.

parentChildStructure 1304 Formalisation of bound compositional-
ity in the parent-child structure and the
stitching function.

planningProblem 994 Formalisation of planning problems on
top of factored transition systems.

SCC 46 Basic results related to strongly con-
nected components.

SCCsystemAbstraction 1384 Results related to computing system ab-
stractions based on computing strongly
connected components of dependency
graphs.

stateSpaceProduct 358 Defining the state space product opera-
tor and some basic facts about it.

systemAbstraction 1135 Definition of different abstraction con-
cepts like projetion and snapshotting,
and verifying some basic facts about
them.

topologicalProps 879 Definition of the diameter, sublist diam-
eter, recurrence diameter, and the traver-
sal diameter and verifying basic theory
about them.

Table 1: A table showing the sizes of different theories and their content.

38 Mohammad Abdulaziz et al.

References

1. Abboud, A., Williams, V.V., Wang, J.: Approximation and fixed parameter sub-
quadratic algorithms for radius and diameter in sparse graphs. In: Proceedings
of the twenty-seventh annual ACM-SIAM symposium on Discrete Algorithms,
pp. 377–391. SIAM (2016)

2. Abdulaziz, M., Gretton, C., Norrish, M.: Mechanising Theoretical Upper Bounds
in Planning. In: Workshop on Knowledge Engineering for Planning and Schedul-
ing (2014)

3. Abdulaziz, M., Gretton, C., Norrish, M.: Verified Over-Approximation of the Di-
ameter of Propositionally Factored Transition Systems. In: Interactive Theorem
Proving, pp. 1–16. Springer (2015)

4. Abdulaziz, M., Gretton, C., Norrish, M.: A State Space Acyclicity Property for
Exponentially Tighter Plan Length Bounds. In: International Conference on Au-
tomated Planning and Scheduling (ICAPS). AAAI (2017)

5. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM Journal on Computing
28(4), 1167–1181 (1999)

6. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path
problem. Journal of Computer and System Sciences 54(2), 255–262 (1997)

7. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM (JACM)
42(4), 844–856 (1995)

8. Baumgartner, J., Kuehlmann, A., Abraham, J.: Property checking via structural
analysis. In: Computer Aided Verification, pp. 151–165. Springer (2002)

9. Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model check-
ing. In: Compositionality: The Significant Difference, pp. 81–102. Springer
(1998)

10. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 117–148 (2003)

11. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS, pp. 193–207 (1999)

12. Björklund, A., Husfeldt, T.: Finding a path of superlogarithmic length. SIAM
Journal on Computing 32(6), 1395–1402 (2003)

13. Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths
and cycles. In: International Colloquium on Automata, Languages, and Pro-
gramming, pp. 222–233. Springer (2004)

14. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-
order logic based on a relational model finder. In: Interactive Theorem Proving,
First International Conference, ITP 2010, pp. 131–146 (2010). DOI 10.1007/
978-3-642-14052-5 11

15. Bundala, D., Ouaknine, J., Worrell, J.: On the magnitude of completeness thresh-
olds in bounded model checking. In: Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science, pp. 155–164. IEEE
Computer Society (2012)

16. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification
by temporal decomposition. In: FMCAD 2009, 15-18 November 2009, Austin,

Formally Verified Algorithms for Upper-Bounding State Space Diameters 39

Texas, USA, pp. 17–24 (2009)
17. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs.

SIAM Journal on Computing 39(5), 2075–2089 (2010)
18. Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams,

V.V.: Better approximation algorithms for the graph diameter. In: Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1041–1052. Society for Industrial and Applied Mathematics (2014)

19. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explo-
sion problem in model checking. In: Informatics, pp. 176–194. Springer (2001)

20. Clarke, E.M., Emerson, E.A., Sifakis, J.: Turing lecture: model checking–
algorithmic verification and debugging. Communications of the ACM 52(11),
74–84 (2009)

21. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
transactions on Programming Languages and Systems (TOPLAS) 16(5), 1512–
1542 (1994)

22. Constable, R.L., Jackson, P.B., Naumov, P., Uribe, J.C.: Constructively formal-
izing automata theory. In: Proof, language, and interaction, pp. 213–238 (2000)

23. Dankelmann, P.: The diameter of directed graphs. Journal of Combinatorial The-
ory, Series B 94(1), 183–186 (2005)

24. Dankelmann, P., Dorfling, M.: Diameter and maximum degree in eulerian di-
graphs. Discrete Mathematics 339(4), 1355–1361 (2016)

25. Dankelmann, P., Volkmann, L.: The diameter of almost eulerian digraphs. the
electronic journal of combinatorics 17(1), R157 (2010)

26. Doczkal, C., Kaiser, J.O., Smolka, G.: A constructive theory of regular languages
in coq. In: International Conference on Certified Programs and Proofs, pp. 82–
97. Springer (2013)

27. Erdős, P., Pach, J., Pollack, R., Tuza, Z.: Radius, diameter, and minimum degree.
Journal of Combinatorial Theory, Series B 47(1), 73–79 (1989)

28. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.:
A fully verified executable LTL model checker. In: International Conference on
Computer Aided Verification, pp. 463–478. Springer (2013)

29. Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence 2(3-4), 189–208 (1971)

30. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL
synthesis. Formal Methods in System Design 39(3), 261–296 (2011)

31. Fredman, M.L.: New bounds on the complexity of the shortest path problem.
SIAM Journal on Computing 5(1), 83–89 (1976)

32. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelli-
gence Research 26, 191–246 (2006)

33. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

34. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI, pp. 359–363 (1992)
35. Knoblock, C.A.: Automatically generating abstractions for planning. Artificial

Intelligence 68(2), 243–302 (1994)
36. Knyazev, A.: Diameters of pseudosymmetric graphs. Mathematical Notes 41(6),

473–482 (1987)

40 Mohammad Abdulaziz et al.

37. Kroening, D.: Computing over-approximations with bounded model checking.
Electronic Notes in Theoretical Computer Science 144(1), 79–92 (2006)

38. Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear com-
pleteness thresholds for bounded model checking. In: Computer Aided Verifica-
tion, pp. 557–572. Springer (2011)

39. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In:
VMCAI, pp. 298–309 (2003)

40. McMillan, K.L.: Symbolic model checking. In: Symbolic Model Checking, pp.
25–60. Springer (1993)

41. Moon, J.W., et al.: On the diameter of a graph. The Michigan Mathematical
Journal 12(3), 349–351 (1965)

42. Nipkow, T.: Verifying a hotel key card system. In: K. Barkaoui, A. Caval-
canti, A. Cerone (eds.) Theoretical Aspects of Computing (ICTAC 2006), Lec-
ture Notes in Computer Science, vol. 4281. Springer (2006). Invited paper.

43. Pardalos, P.M., Migdalas, A.: A note on the complexity of longest path problems
related to graph coloring. Applied mathematics letters 17(1), 13–15 (2004)

44. Paulson, L.C.: A formalisation of finite automata using hereditarily finite sets.
In: International Conference on Automated Deduction, pp. 231–245. Springer
(2015)

45. Pnueli, A., Rodeh, Y., Strichman, O., Siegel, M.: The small model property: How
small can it be? Information and computation 178(1), 279–293 (2002)

46. Rintanen, J.: Planning as satisfiability: Heuristics. Artificial Intelligence 193,
45–86 (2012)

47. Rintanen, J., Gretton, C.O.: Computing upper bounds on lengths of transition
sequences. In: International Joint Conference on Artificial Intelligence (2013)

48. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: SAT-based parallel planning
using a split representation of actions. In: ICAPS (2009)

49. Roditty, L., Vassilevska Williams, V.: Fast approximation algorithms for the di-
ameter and radius of sparse graphs. In: Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pp. 515–524. ACM (2013)

50. Schimpf, A., Merz, S., Smaus, J.G.: Construction of Büchi automata for LTL
model checking verified in Isabelle/HOL. In: International Conference on Theo-
rem Proving in Higher Order Logics, pp. 424–439. Springer (2009)

51. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induc-
tion and a SAT-solver. In: Formal Methods in Computer-Aided Design, Third
International Conference, FMCAD 2000, Austin, Texas, USA, November 1-3,
2000, Proceedings, pp. 108–125 (2000). DOI 10.1007/3-540-40922-X 8

52. Slind, K., Norrish, M.: A brief overview of HOL4. In: Theorem Proving in
Higher Order Logics, LNCS, vol. 5170, pp. 28–32. Springer (2008)

53. Soares, J.: Maximum diameter of regular digraphs. Journal of Graph Theory
16(5), 437–450 (1992)

54. Sprenger, C.: A verified model checker for the modal µ-calculus in coq. In: Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 167–183. Springer (1998)

55. Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In:
International Joint Conference on Artificial Intelligence, pp. 1178–1185. Morgan

Formally Verified Algorithms for Upper-Bounding State Space Diameters 41

Kaufmann Publishers (1997)
56. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem

based on regular expressions (proof pearl). In: International Conference on In-
teractive Theorem Proving, pp. 341–356. Springer (2011)

57. Yuster, R.: Computing the diameter polynomially faster than APSP. arXiv
preprint arXiv:1011.6181 (2010)

	Introduction
	Related Work
	Basic Concepts and Notations
	Using Acyclic Dependency for Compositional Bounding
	Formally Verifying the Top-Down Algorithm
	Exploiting State Space Acyclicity
	Combining Acyclicity in Dependency and State Space: A Hybrid Algorithm
	Concluding Remarks

