
Mechanising Theoretical Upper Bounds in Planning

Mohammad Abdulaziz and Charles Gretton and Michael Norrish ∗

Canberra Research Lab., NICTA
7 London Circuit, Canberra ACT 2601, Australia

{Mohammad.Abdulaziz, Charles.Gretton, Michael.Norrish}@nicta.com.au

Abstract

We examine the problem of computing upper bounds
on the lengths of plans. Tractable approaches to cal-
culating such bounds are based on a decomposition of
state-variable dependency graphs (causal graphs). Our
contribution follows an existing formalisation of con-
cepts in that setting, reporting our efforts to mechanise
bounding inequalities in HOL. Our first contribution is
to identify and repair an important error in the original
formalisation of bounds. More importantly, we also de-
velop novel theoretical bounding results and compare
them analytically with existing bounds.

Introduction
This paper develops novel insights and approaches for rea-
soning about upper bounds on the lengths of plans. Formally,
an upper bound of N means that, if a plan exists, then an
optimal plan comprises no more than N steps. A variety of
applications for such upper bounds have been proposed. If
an explicit state-based search encounters a state with upper
bound N and lower bound M—if a plan exists, it must be
at least of length M—then if N < M the state can safely
be pruned. Also, given a tight upper bound N , the plan ex-
istence problem can be reduced to a fixed-horizon reach-
ability problem—i.e., is there a plan of length less-than-
or-equal-to N? In that case the fixed-horizon problem can
be posed as a Boolean SAT(isfiability) problem (Kautz and
Selman 1996). More generally, planning problems can be
solved using SAT solvers given a query strategy that focuses
search effort at important horizon lengths (Rintanen 2004;
Streeter and Smith 2007). Tight horizon bounds provide fo-
cus in that setting. Lastly, in situations where no plan exists,
bounds have been used to identify a small subset of goal
facts that cannot be achieved together. Here, plan existence
for goal sets which admit short bounds are tested earliest,
so that non-existence can be established quickly using rela-
tively little search effort.

Our contributions follow (Rintanen and Gretton 2013),
which describes a general procedure for computing up-
per bounds based on state-variable dependency information.

∗NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

That approach yields useful bounds in problems that exhibit
a branching one-way dependency structure. A highlighted
example of that type of dependency occurs in the logistics
benchmark. To change the location of a package, vehicles
must be used. The locations of vehicles can be modified irre-
spective of the package locations, and indeed independently
of each other. In other words, each package has a one-way
dependency with vehicles and otherwise all objects can be
manipulated independently.

This work reports on our efforts so far to obtain mecha-
nized proofs of the correctness of versions of the headline
theorems from (Rintanen and Gretton 2013). Our work has
exposed a subtle yet important error in the original formal-
isation of bounds. We correct the original formalisation of
upper bounds and summarise the new proof of the bounds
from that work. 1 The new proof employs a constructive
technique, relying on a function which builds a plan of an
appropriate length given an overly long input. Our new proof
of correctness is mechanised in the HOL interactive theorem
proving system (Slind and Norrish 2008). We provide links
to that mechanisation work which is hosted on github. Fi-
nally, we also develop novel inequalities which yield tighter
bounds than existing approaches.

Definitions and Notations
We formalise the planning problem and give definitions of
concepts related to computing bounds on solution lengths.
Our definitions are functionally equivalent to standard expo-
sitions of deterministic propositional planning. We include
two minor departures, used to decrease the verbosity of our
proofs. In particular, our formalisation supposes there is a
single goal-state, rather than a set of goal states. Also, we
allow any action to be executed at any state, supposing its
effects are only realised if its preconditions are satisfied at
the state from which it is executed.
Definition 1 (States and Actions). A planning problem is
defined in terms of states and actions:

1. We model states as finite maps from variables—i.e., state
characterizing propositions—to Booleans.
1We note that the algorithm and experimental results from (Rin-

tanen and Gretton 2013) are presumed correct: that part of the work
uses cardinality derived bounds rather than the bounding concept
presented in the original formalisation.

2. An action π is a pair of finite maps. Each of those maps
is from a subset of the problem variables to the Booleans.
The domain of each of these maps does not have to be
the same. The first component of the pair (p(π)) is the
precondition: each variable in the domain of the map must
have the specified value if the action is to affect any state
change.2 The second component of the pair (e(π)) is the
effect: each variable in the domain of the map takes on
the specified value in the resulting state. We say that a
variable is an action precondition if it is in the domain
of the precondition map, and similarly that it is an action
effect if it is in the domain of the effect map.

3. An action sequence π̇ is a list of actions. We use the nota-
tion π :: π̇ (a “cons”) to denote the sequence which has
π as its first element, followed by the actions in π̇, and []
to denote the empty sequence.

We will write concrete examples of states and actions as sets
of variables that are either bare (mapping to true), or over-
lined (mapping to false). For example, {x, y, z} is the state
where state variables x and z are true, and y is false.
We now use the above concepts to define a planning prob-
lem.
Definition 2 (Planning Problems). A problem Π is a 3-tuple
Π = 〈I, A,G〉, with I the initial state of the problem, G the
goal state and A a set of permitted actions. When writing
about the components of a problem Π, unless explicitly writ-
ten otherwise we will write I , A and G for Π.I etc., leaving
the Π implicit. We will write D for the domain of the initial
state; this is the domain of the problem.

Problem Π is valid if the goal has the same domain as
the initial state, and all actions refer exclusively to variables
that occur in that set. We only consider valid problems.

Naturally, a state s is valid with respect to a planning prob-
lem Π if its domain is the same as that of the initial state I .
Definition 3 (Action Execution). When an action π is exe-
cuted at state s, it causes a transition to a successor state.
If the precondition is not satisfied at s, the successor is sim-
ply s once more. Otherwise, the action effects hold at the
successor. We denote this operation exec(s, π). We lift that
definition to sequences of executions taking an action se-
quence π̇ as the second argument. So exec(s, π̇) denotes the
state resulting from successively applying each of π̇’s ac-
tions, starting with s.

Key concepts in formalising bounds in planning are those
of projection and dependency graph.
Definition 4 (Projection). Projecting an object (a state s, an
action π, a sequence of actions π̇ or a problem Π) on a set
of variables vs refers to restricting the domain of the object
or its constituents to vs . We denote these operations as s�vs ,
π�vs , π̇�vs and Π�vs for a state, action, action sequence and
problem respectively. Note that if an action sequence π̇ is
projected in this way, it may come to include actions with
empty preconditions and/or effects, however, actions with
empty effects are removed.

2We use the word domain in the mathematical sense—i.e., the
set from which the function arguments are drawn. To avoid confu-
sion, we shall not use this term to refer to a PDDL model.

Definition 5 (Problem Dependency Graphs). The depen-
dency graph of a problem Π is a directed graph, written
G, describing variable dependencies. This graph was con-
ceived under different guises in (Williams and Nayak 1997)
and (Bylander 1994), and is also commonly referred to as a
causal graph. That graph features one vertex for each vari-
able inD. An edge from v1 to v2 records that v2 is dependent
on v1. A variable v2 is dependent on v1 in a planning prob-
lem Π iff one of the following statements holds:

1. v1 is the same as v2.
2. There is an action π in A such that v1 is a precondition of
π and v2 is an effect of π.

3. There is an action π in A such that both v1 and v2 are
effects of π.

We write v1 → v2 if there is a directed arc from v1 to v2
in the dependency graph for Π. Also, when we illustrate a
dependency graph we do not draw arcs from a variable to
itself although it is dependent on itself.

We also lift the concept of dependency graphs and refer to
lifted dependency graphs (written Gvs) in which each vertex
represents a distinct set of problem variables. The vertices
(set of variables) in lifted graphs will partition the domain
D of the original problem.
Definition 6 (Dependencies of Sets of Variables). An edge
from a set of variables vs1 to set vs2 records that vs2 is
dependent on vs1. A set of variables vs2 is dependent on
vs1 in a planning problem Π (written vs1 → vs2) iff all of
the following conditions hold:

1. vs1 is disjoint from vs2.
2. There exist variables v1 ∈ vs1 and v2 ∈ vs2 such that
v1 → v2.
In revising previous work, we refer to the strongly con-

nected components (SCCs) of a dependency graph.
Definition 7 (Strongly Connected Component). An SCC of
G is a maximal subgraph in which there is a directed path
from each vertex to every other vertex. We write GS for the
lifted graph which has one vertex for each SCC inG, and an
edge from component (a set of variables) vs1 to component
vs2 iff vs1 → vs2. Note that GS will be a DAG.
Definition 8 (Leaves, Ancestors and Children). For any
DAG G, the set of leaves L(G) contains those vertices of
G from which there are no outgoing edges. We also write
AG(n) to denote the set of n’s ancestors in G. Formally,
AG(n) = {n0 | n0 ∈ G ∧ n0 →+ n}, where →+ is the
transitive closure of →.We also write CG(n) to denote the
set {n0 | n0 ∈ G ∧ n→ n0} which are the children of n in
G.

Finally, an important relation on lists (of actions) on
which our work relies is the scattered sublist3 relation:
Definition 9 (Scattered Sublists). List l1 is a scattered sub-
list of l2 (written l1 �· l2) if all the members of l1 occur in
the same order in l2.

3Our “scattered sublist” is sometimes referred to as a “subse-
quence” in the computer science literature. In HOL we require a
distinct concept.

[] H
vs
π̇ = π̇�D−vs

π̇c H
vs

[] = []

πc :: π̇c H
vs
π :: π̇ =

{
π :: (π̇c H

vs
π̇) if π�vs = πc

πc :: π̇c H
vs
π̇ o/wise

Figure 1: The definition of the stitching function (H).

w

x y z

Figure 2: The dependency graph of the problem in Example
2.

Derivation of Upper Bounds
The main contribution of our work is the constructive proof
technique we use to derive plan-length bounds. Our ap-
proach is the outcome of an exercise in mechanising the
proofs of the results from (Rintanen and Gretton 2013) us-
ing the HOL interactive theorem proving system (Slind and
Norrish 2008)4. Working from first principles, that exercise
uncovered a subtle yet important error in the original formal-
isation of bounds.In detail, a plan-length bound was origi-
nally formulated as the maximum of the minimum length
executions between pairs of states. An important error be-
comes apparent in the usage of that bound, which follows
the algorithm of iterative plan refinement described orig-
inally in (Knoblock 1994). Summarising the error, earlier
work incorrectly assumed that an abstract plan satisfying
that bound could be refined into a complete plan for the
problem at hand. However, valid problems exist where no
minimum length executions in the abstract model can be re-
fined to create a valid plan. The key assumption is invalid
and thus a correction is needed. In what follows we describe
the error we discovered in (Rintanen and Gretton 2013),
correct that error, and then describe our proofs of important
bounding theorems.

Error
The headline result in (Rintanen and Gretton 2013) is de-
scribed using an upper bound function that was written us-
ing the ` symbol. Because we are treating both the erroneous
and repaired versions of the function in our work, we have
chosen to write `⊥ for the original erroneous version. We
use the subscript ⊥ symbol to emphasise that it leads to an

4The mechanised formalisation and proofs de-
scribed in this paper can be found online at
https://github.com/mabdula/planning/.

invalid result. Intuitively, `⊥ denotes a function which takes
a planning problem Π and returns the length of the longest
optimal execution between any two valid states in Π. We
now formally review the definition of `⊥, identifying and
explaining two errors. Following that, we shall repair that
definition in support of the upper bounds in (Rintanen and
Gretton 2013) . We write Π(s) for the set of finite lists of
actions in Π that reach s from I , S for the set of states in Π,
and |π̇| for the length of execution π̇.
Definition 10.

`⊥(Π) = max
s∈S

min
π̇∈Π(s)

|π̇|

A first negative consequence of the above definition
renders `⊥ unsuitable for making statements about upper
bounds. Specifically, `⊥ is not well-defined in situations
where there are no valid executions between I and a state
s—i.e., the function min has no well-defined output in that
situation. This issue was not dealt with adequately in (Rin-
tanen and Gretton 2013) . We illustrate this error with an
example.
Example 1. Consider the planning problem Π such that

Π = < I = {x, y, z}, A = {({x, y}, {z})}, G = {x, y, z} >

Now let s = {x, y, z} and s′ = {x, y, z}. These are two
valid states in Π but a transition from s to s′ is impossible.
So `⊥ is thus ill-defined for Π.

We can mitigate this ill-definedness by treating reachabil-
ity explicitly, as follows. We shall see in a moment how-
ever that the proposed correction is still insufficient. Let
Ȧ be the set of finite lists of actions in Π and Π(π̇, s) =

{π̇′|exec(s, π̇) = exec(s, π̇′) ∧ π̇′ ∈ Ȧ}, i.e., the set of exe-
cutions from s equivalent to π̇.
Definition 11.

`′⊥(Π) = max
s∈S,π̇∈Ȧ

min
π̇′∈Π(π̇,s)

|π̇′|

This proposed modification to `′⊥ is insufficient to fix a
deeper error. A headline results from (Rintanen and Gretton
2013) states:
Not-A-Theorem 1. If the domain of Π is comprised of two
disjoint sets of variables vs1 and vs2 satisfying vs2 6→ vs1,
we have:

`′⊥(Π) < (`′⊥(Π�vs1) + 1)(`′⊥(Π�vs2) + 1)

This inequality is invalid with respect to Definition 11
(and Definition 10), as follows.
Example 2. Consider the problem

Π =

〈 I = {w, x, y, z}

A =

{
a = (∅, {x}), b = ({x}, {x, y}),
c = ({x, y}, {x, y, z}), d = ({w}, {x, y, z})

}
G = {w, x, y, z}

〉

whose dependency graph is shown in Figure 2. Note that
here we include the starting and goal conditions, however
`′⊥ is independent of those. The domain is comprised of
two sets of variables S = {x, y, z}, which is an SCC, and

w x

v y z

Figure 3: Dependency graph of the problem in Example 3.

the set AGS
(S) = {{w}}. The evaluation of `′⊥(Π) gives

7, as this is the maximal length optimal execution. Specif-
ically, that maximal optimal execution is [a; b; a; c; a; b; a]
from {w, x, y, z} to {w, x, y, z}. Treating the abstract prob-
lems Π�S and Π�⋃AGS

(S), we get the bounds 1 and 6, re-
spectively. This violates Not-A-Theorem 1.

Mechanisation of Existing Bounds
In this section we provide a corrected definition of `. Adopt-
ing that new definition we describe our mechanised proof
of the inequality that featured in Not-A-Theorem 1. We also
develop novel bounds and compare them to the inequalities
suggested in (Rintanen and Gretton 2013) , showing that in
some cases our novel bounds dominate.

Our definition of ` mitigates the problem exhibited in the
definition by (Rintanen and Gretton 2013) by appealing to
Π�·(π̇, s) = {π̇′|exec(s, π̇) = exec(s, π̇′) ∧ π̇′ �· π̇} – i.e.,
the set of executions from s that are equivalent to π̇ and also
scattered sublists of π̇.

Definition 12.

`(Π) = max
s∈S,π̇∈Ȧ

min
π̇′∈Π�·(π̇,s)

|π̇′|

It should be clear that `(Π) is a valid upper bound for
Π. Using ` we can first prove a corrected version of Not-A-
Theorem 1.

Theorem 1. If the domain of Π is comprised of two disjoint
sets of variables vs1 and vs2 satisfying vs2 6→ vs1, we have:

`(Π) < (`(Π�vs1) + 1)(`(Π�vs2) + 1)

Proof. To prove Theorem 1 we use a construction which,
given any plan π̇ for Π violating the stated bound, pro-
duces a shorter witness plan π̇′ satisfying that bound. The
premise vs2 6→ vs1 implies that actions with variables
from vs2 in their effects—hereupon we shall call these vs2-
actions—never include vs1 variables in their effects. Also,
because vs1 and vs2 capture all problem variables, the ef-
fects of vs1-actions after projection to the set vs1 are un-
changed. Our construction first considers the abstract action
sequence π̇�vs2 . Definition 12 of ` provides a scattered sub-
list π̇′vs2 �· π̇�vs2 satisfying |π̇′vs2 | ≤ `(Π�vs2). Moreover,
the definition of ` can guarantee that π̇′vs2 is equivalent,
in terms of the execution outcome, to π̇�vs2 . The stitching
function described in Figure 1 is then used to remove the
vs2-actions in π̇ whose projections on vs2 are not in π̇′vs2 .
Thus our construction arrives at a plan π̇′′ = π̇′vs2 Hvs2

π̇ with

S1

S2S3

Figure 4: An SCC graph with 3 SCCs.

S1 S2

S3 S4

Figure 5: An SCC graph with 4 SCCs.

at most `(Π�vs2) vs2-actions. We are left to address the con-
tinuous lists of vs1-actions in π̇′′, to ensure that in the con-
structed plan any such list satisfies the bound `(Π�vs1). The
method by which we obtain π̇′′ guarantees that there are at
most `(Π�vs2) + 1 such lists to address. The definition of `
provides that for any abstract list of actions π̇�vs1 in Π�vs1 ,
there is a list that achieves the same outcome of length at
most `(Π�vs1). Our construction is completed by replacing
each continuous sequence of vs1-actions in π̇′′ with wit-
nesses of appropriate length (`(Π�vs1)).

The above construction can be illustrated using the fol-
lowing concrete example.
Example 3. Consider the valid problem

Π =

〈 I = {v, w, x, y, z}

A =

a = (∅, {x}), b = ({x}, {y}),
c = ({x}, {v}), d = ({x}, {w}),
e = ({y}, {v}), f = ({w, y}, {z}),
g = ({x}, {y, z})

G = {v, w, x, y, z}

〉

whose dependency graph is shown in Figure 3. The domain
of Π has a subset vs2 = {v, y, z} where vs2 is dependent
on the set vs1 = {w, x}, and vs1 is not dependent on vs2.

In Π, the actions b, c, e, f, g are vs2-actions, and a, d
are vs1-actions. A plan π̇ for Π is [a; a; b; c; d; d; e; f].
When the plan π̇ is projected on vs2 it becomes
[b�vs2 ; c�vs2 ; e�vs2 ; f�vs2], which is a plan for Π�vs2 . A
shorter plan, π̇c, for Π�vs2 is [b�vs2 ; f�vs2]. Since π̇c is a
scattered sublist of as�vs2 , we can use the stitching func-
tion to obtain a shorter plan for Π. In this case, π̇c H

vs2
π̇ is

[a; a; b; d; d; f]. The second step is to contract the pure vs1
segments which are [a; a] and [d; d], which are contracted to
[a] and [d] respectively. The final constructed witness for our
bound is the plan [a; b; d; f].

So far we have seen how to reason about problem bounds
by treating abstract subproblems separately. We now re-
view how subexponential bounds for planning problems are

achieved by exploiting branching one-way state-variable de-
pendencies. An example of that type of dependency struc-
ture is exhibited in Figure 4, where Si are sets of variables
each of which forms an SCC in the dependency graph, and
we have both S1 → S2 and S1 → S3. Recall, the latter
means that there is at least one edge from a variable in S1

to one in S2, and similarly between S1 and S3. Importantly,
Figure 4 gives S2 6→ S1 and S3 6→ S1, and there is no de-
pendency between any variables in S2 and S3. For bounding
optimal plan lengths, the following theorem was suggested
in (Rintanen and Gretton 2013) to exploit such structures.

Theorem 2. Following Definition 7,GS is the DAG of SCCs
from the dependency graph for a problem Π. The upper
bound `(Π) satisfies the following inequality:

`(Π) ≤ ΣS∈L(GS)`(Π�S∪(⋃AGS
(S))) (1)

In our work we have established sometimes superior
bounds by deviating from the above inequality. The theo-
rem that we mechanised can provide tighter bounds for some
specific dependency structures; and otherwise it does not
dominate and is not dominated by the bound provided by
the inequality in Theorem 2. Our theorem exploits planning
problems which are partitioned by two sets of state variables
that are not connected in the dependency graph.

Theorem 3. For a problem Π whose domain is partitioned
by vs1 and vs2 such that vs1 6→ vs2 and vs2 6→ vs1

`(Π) ≤ `(Π�vs1) + `(Π�vs2) (2)

Proof. The premises vs1 6→ vs2 and vs2 6→ vs1 implies that
vs2-actions have no variables from vs1 in their effects or
preconditions and vs1-actions have no vs2 variables in their
effects or preconditions. This implies that removing vs1-
actions from a plan does not affect the executability of vs2-
actions in that plan. This statement applies in the other direc-
tion also, in the case of vs2-action removal. Our construction
first takes the action sequence π̇�vs2 . Definition 12 of ` pro-
vides an action sequence π̇′vs2 scattered sublist π̇′vs2 �· π̇�vs2
satisfying |π̇′vs2 | ≤ `(Π�vs2). Moreover, the definition of `
guarantees that π̇′vs2 is equivalent, in terms of the execution
outcome, to π̇�vs2 . The stitching function described in Fig-
ure 1 is then used to remove the vs2-actions in π̇ whose
projection on vs2 is not in π̇′vs2 . Thus our construction ar-
rives at a plan π̇′′ = π̇′vs2 Hvs2

π̇ whose execution outcome is

the same as π̇ but in which the number of vs2-action is at
most `(Π�vs2). The next step is to consider π̇′′�vs1 . Then
we obtain π̇′vs1 whose execution outcome is equivalent to
π̇′′�vs1 , which has at most `(Π�vs1) actions. Then stitching
again we obtain the plan π̇′vs1 Hvs1

π̇′′ which is a plan that has

the same outcome as π̇′′ and accordingly π̇ but with at most
`(Π�vs1) + `(Π�vs2) actions.

Comparison
In this section we compare different ways to decompose de-
pendency graphs based on the results we have so far, and
study the upper bounds thus obtained.

Case 1 Following Theorem 2, a bound on the problem in
Figure 4 is given by :

`(Π) ≤ `(Π�S2∪S1
) + `(Π�S3∪S1

) (3)
Because S2 6→ S1 and S3 6→ S1 hold, the result from

Theorem 1 is applicable:

`(Π) ≤ `(Π�S2
)`(Π�S1

) + `(Π�S2
) + `(Π�S3

)`(Π�S1
)

+`(Π�S3
) + 2`(Π�S1

)
(4)

Alternatively, since S2 ∪ S3 6→ S1 holds, Theorem 1 can
be used, as follows:

`(Π) ≤ `(Π�S2∪S3
)`(Π�S1

) + `(Π�S2∪S3
) + `(Π�S1

) (5)
Because S2 6→ S3 and S3 6→ S2 hold, thus application of

Theorem 3 is admissible, yielding:

`(Π) ≤ `(Π�S2
)`(Π�S1

) + `(Π�S3
)`(Π�S1

) + `(Π�S2
)

+`(Π�S3
) + `(Π�S1

)
(6)

The bound reached by the second approach is based on
our new results, and is the tightest.

Case 2 Decomposing the problem using our novel bounds
does not always lead to a better result. Consider the depen-
dency graph in Figure 5. A bound derived with Theorem 2
on a problem with such a dependency graph will be:

`(Π) ≤ `(Π�S3∪S1
) + `(Π�S4∪(S1∪S2)) (7)

Again, this bound can be decomposed further according
to Theorem 1:

`(Π) ≤ `(Π�S3
)`(Π�S1

) + `(Π�S3
) + `(Π�S1

)
+`(Π�S4

)`(Π�S1∪S2
) + `(Π�S4

)
+`(Π�S1∪S2

)
(8)

Application of Theorem 3 gives:

`(Π) ≤ `(Π�S3
)`(Π�S1

) + `(Π�S4
)`(Π�S1

)
+`(Π�S4

)`(Π�S2
) + 2`(Π�S1

) + `(Π�S2
)

+`(Π�S3
) + `(Π�S4

)
(9)

Alternatively, decomposing the same dependency graph
using Theorem 1 and Theorem 3 will lead to a differ-
ent bound. Because in the dependency graph in Figure 5
(S3 ∪ S4) 6→ (S1 ∪ S2) holds, Theorem 1 is applicable as
follows:

`(Π) ≤ `(Π�S3∪S4
)`(Π�S1∪S2

)+`(Π�S3∪S4
)+`(Π�S1∪S2

)
(10)

This bound can be decomposed further using Theorem 3:

`(Π) ≤ `(Π�S3
)`(Π�S1

) + `(Π�S3
)`(Π�S2

)
+`(Π�S4

)`(Π�S1
) + `(Π�S4

)`(Π�S1
)

+`(Π�S1
) + `(Π�S2

) + `(Π�S3
) + `(Π�S4

)
(11)

Neither of the bounds in Inequality 9 and Inequality 11
dominate. Specifically, the first bound has an extra `(Π�S1

)
term while the second one has an extra `(Π�S2

)`(Π�S3
)

term.

A Tighter Bound
In this section we present a conjecture and an informal
proof of it. To prove our conjecture we require the following
lemma:

Lemma 1. For a planning problem Π for which π̇ is a solu-
tion and for a node S (i.e. an SCC) in GS of Π, there exists
a plan π̇′ such that:

• n(S, π̇′) ≤ `(Π�S)(ΣC∈CGS
(S)n(C, π̇) + 1), where

n(vs, π̇) is the number of vs-actions in π̇, and
• π̇′ �· π̇, and
• ∀ S′ 6= S. n(S′, π̇) = n(S′, π̇′).

Proof. The proof of Lemma 1 is a constructive proof. Let π̇C
be a contiguous fragment of π̇ that has no

⋃
CGS

(S)-actions
in it. Then perform the following steps:

• By the definition of `, there must be a plan π̇S that
achieves the same execution result as π̇C�S , and satisfies
|π̇S | ≤ `(Π�S) and π̇S �· π̇C�S .

• Because D − S −
⋃
CGS

(S) 6→ S holds and using the
same argument used in the proof of Theorem 1, π̇′C(=
π̇S H

S
π̇C�D−

⋃
CGS

(S)) achieves the same D −
⋃
CGS

(S)

assignment as π̇C , and at the same time it is a sublist of
π̇C . Also, n(S, π̇′C) ≤ `(Π�S) holds.

• Finally, because π̇C has no
⋃
CGS

(S)-actions, no⋃
CGS

(S) variables change along the execution of π̇C
and accordingly any

⋃
CGS

(S) variables in preconditions
of actions in π̇C always have the same assignment. This
means that π̇′C H

D−
⋃
CGS

(S)
π̇C will achieve the same result

as π̇C , but with at most `(Π�S) S-actions.

Repeating the previous steps for each π̇C fragment
in π̇ yields an action sequence π̇′ that has at most
`(Π�S)(n(

⋃
CGS

(S), π̇) + 1) S-actions. Because π̇′ is the
result of consecutive applications of the stitching function,
it is a scattered sublist of π̇. Lastly, because during the pre-
vious steps, only S-actions were removed as necessary, the
count of the remaining actions in π̇′ is the same as their num-
ber in π̇.

Corrolary 1. Let F (S, π̇) be the witness plan of Lemma 1
(according to Skolem’s theorem(Hodges 1993)). We know
then that:

• exec(s, π̇) = exec(s, F (S, π̇)), and
• n(S, F (S, π̇)) ≤ `(Π�S)(ΣC∈CGS

(S)n(C, π̇) + 1), and

• F (S, π̇) �· π̇, and
• ∀ S′ 6= S. n(S′, π̇) = n(S′, F (S, π̇)).

We now use Corollary 1 to prove the following theorem:

Theorem 4. For a planning problem Π, the upper bound
`(Π) satisfies the following inequality:

`(Π) ≤ ΣS∈GS
N(S) (12)

where N(S) = `(Π�S)(ΣC∈CGS
(S)N(C) + 1).

Proof. Again, our proof of this theorem follows a construc-
tive approach where we begin by assuming we have a solu-
tion π̇. The goal of the proof is to find a witness plan π̇′ such
that ∀ S ∈ GS . n(S, π̇′) ≤ N(S). We proceed by induction
on lS ,the list of nodes in GS , assuming that it is topologi-
cally sorted. As our graph is not empty, the base case is a
singleton list [S]. In this case the goal reduces to finding a
plan π̇0 such that n(S, π̇0) ≤ N(S) and π̇0 �· π̇. Since S
has no children (as it is the only node), N(S) = `(Π�S) and
accordingly the proof follows from the definition of `.

In the step case, we assume the result holds for any prob-
lem whose non-empty node list is the topologically sorted
lS . We then show that it also holds for Π, a problem whose
node list is S :: lS , where S has no parents (hence its posi-
tion at the start of the sorted list), and lS is non-empty. Since
the node list of Π�D−S is lS , the induction hypothesis ap-
plies. Accordingly, there is a solution π̇D−S for Π�D−S such
that π̇D−S �· π̇�D−S and ∀ K ∈ lS . n(K, π̇′) ≤ N(K).
Since S :: lS is topologically sorted, D − S 6→ S holds.
Therefore π̇′D−S = π̇D−S H

D−S
π̇ is a solution for Π (using

the same argument used in the proof of Theorem 1). Fur-
thermore, ∀K ∈ lS . n(K, π̇′D−S) ≤ N(K) and π̇′D−S �· π̇.
The last step in this proof is to apply F to (S, π̇′D−S) to get
the required witness. From Corollary 1 and because the op-
erators = and �· are transitive, we know that

• exec(s, π̇) = exec(s, F (S, π̇′D−S)), and
• n(S, F (S, π̇′D−S)) ≤ `(Π�S)(ΣC∈CGS

(S)n(C, π̇′D−S) +

1), and
• F (S, π̇′D−S) �· π̇, and
• ∀ K 6= S. n(K, π̇′D−S) = n(K,F (S, π̇′D−S)).

Since ∀ K ∈ lS . n(K, π̇′D−S) ≤ N(K) holds, then
n(S, F (S, π̇′D−S)) ≤ `(Π�S)(ΣC∈CGS

(S)N(C)) is true.
Accordingly the plan demonstrating the needed bound is
F (S, π̇′D−S).

Bounds Obtained
Using Theorem 4, we can compute bounds that are tighter
than the ones obtained using Theorem 2 for the two depen-
dency graphs in Figure 4 and Figure 5. These bounds can be
obtained by computing N(S) for every SCC in the graph in
the reverse topological order of the SCCs and summing the
results.

Case 1 For the dependency graph in Figure 4 we start
by computing N(S2) and N(S3) which are going to be
`(Π�S2

) and `(Π�S3
) because they both have no children.

Then we compute N(S1) which will be `(Π�S1
)`(Π�S2

) +
`(Π�S1

)`(Π�S3
) + `(Π�S1

). Accordingly and based on The-
orem 4 the bound on the problem is

`(Π) ≤ `(Π�S1
)`(Π�S2

) + `(Π�S1
)`(Π�S3

) + `(Π�S1
)

+`(Π�S2
) + `(Π�S3

)
(13)

This bound is tighter than the one obtained using Theorem 2
shown in Inequality 4.

Case 2 For the dependency graph in Figure 5 we start
by computing N(S3) and N(S4) which equal `(Π�S3

) and
`(Π�S4

), respectively, because they both have no children.
Then we compute N(S1) which will be `(Π�S1

)`(Π�S3
) +

`(Π�S1
)`(Π�S4

) + `(Π�S1
). Finally we compute N(S2)

which will be `(Π�S2
)`(Π�S4

) + `(Π�S2
). Accordingly the

bound on the problem is

`(Π) ≤ `(Π�S1
)`(Π�S3

) + `(Π�S1
)`(Π�S4

)
+`(Π�S2

)`(Π�S4
) + `(Π�S1

) + `(Π�S2
)

+`(Π�S3
) + `(Π�S4

)
(14)

This bound is tighter than the one obtained using Theorem 2
shown in Inequality 9.

Conclusion and Future Work
With this work, we believe we have launched a fruitful inter-
disciplinary collaboration between the fields of AI planning
and mechanised mathematical verification. From the interac-
tive theorem-proving community’s point of view, it is grati-
fying to be able to find and fix errors in the modern research
literature. Specifically, we found errors in the existing for-
malisation of bounds (errors that led to the statement of a
false theorem), corrected the errors with a revised definition
of the key notion, and then gave a mechanized proof of a key
result relating to the calculation of upper bounds.

For planning systems to be deployed in safety critical ap-
plications and for autonomous exploration of space, they
must not only be efficient, and conservative in their resource
consumption, but also correct. We have therefore found it
highly gratifying to be able to give the planning community
strong assurance of the correctness of the formalisation we
treated.

We have only scratched the surface so far. When a tight
bound for a planning problem is known, the most effective
technique for finding a plan is to reduce that problem to
SAT (Rintanen 2012). Proposed reductions are constructive,
in the sense that a plan can be constructed in linear time from
a satisfying assignment to a formula. A key recent advance
in the setting of planning-via-SAT has been the development
of compact SAT-representations of planning problems. Such
representations facilitate highly efficient plan search (Rinta-
nen 2012; Robinson et al. 2009). In future work, we would
like to verify the correctness of both the reductions to SAT,
and the algorithms that subsequently construct plans from a
satisfying assignment.

References
Bylander, T. 1994. The computational complexity of propo-
sitional strips planning. Artif. Intell. 69(1-2):165–204.
Hodges, W. 1993. Model theory, volume 42. Cambridge
University Press Cambridge.
Kautz, H. A., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic and stochastic search. In Proc.
13th National Conf. on Artificial Intelligence, 1194–1201.
AAAI Press.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artif. Intell. 68(2):243–302.

Rintanen, J., and Gretton, C. O. 2013. Computing upper
bounds on lengths of transition sequences. In IJCAI.
Rintanen, J. 2004. Evaluation strategies for planning as
satisfiability. In Proc. 16th European Conf. on Artificial In-
telligence, 682–687. IOS Press.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tif. Intell. 193:45–86.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-based parallel planning using a split representation of
actions. In ICAPS.
Slind, K., and Norrish, M. 2008. A brief overview of HOL4.
In Theorem Proving in Higher Order Logics, volume 5170
of LNCS, 28–32. Springer.
Streeter, M. J., and Smith, S. F. 2007. Using decision proce-
dures efficiently for optimization. In Proc. 17th Intnl. Con-
ference on Automated Planning and Scheduling, 312–319.
AAAI Press.
Williams, B. C., and Nayak, P. P. 1997. A reactive plan-
ner for a model-based executive. In Proc. 15th Intnl. Joint
Conference on Artificial Intelligence, 1178–1185. Morgan
Kaufmann Publishers.

