
Cost Optimal Planning as Satisfiability

Mohammad Abdulaziz
Techniche Universität München, Germany

Abstract

We investigate upper bounds on the length of cost optimal
plans that are valid for problems with 0-cost actions. We em-
ploy these upper bounds as horizons for a SAT-based encod-
ing of planning with costs. Given an initial upper bound on
the cost of the optimal plan, we experimentally show that
this SAT-based approach is able to compute plans with better
costs, and in many cases it can match the optimal cost. Also,
in multiple instances, the approach is successful in proving
that a certain cost is the optimal plan cost.

Introduction
Compilation to propositional satisfiability (SAT), or other
constraint formalisms, has been a successful approach to
solving different variants of planning and model check-
ing (Kautz and Selman 1992; Biere et al. 1999). The major-
ity of such compilation based techniques work by submitting
multiple queries to a constraints solver, e.g. a SAT solver,
and each of those queries encode the question ‘Does there
exist a witness transition sequence with at most h steps?’,
where h is some natural number, usually called the horizon.
This is repeated for multiple increasing values of h. In order
for these methods to be complete, there must be an upper
bound on h, usually called the completeness threshold, be-
yond which no witness would be found if none that is shorter
exists. Also, the tighter the bounds, the more efficient these
compilation based procedures are.

Previous work has identified different topological proper-
ties of the state space to be completeness thresholds for dif-
ferent variants of model checking and planning problems.
E.g. for bounded model checking of safety properties, Biere
et al. identified the diameter, which is the length of the
longest shortest path in the state space, as a completeness
threshold. The diameter is also a completeness threshold for
SAT-based satisficing planning. Biere et al. also identified
the recurrence diameter, which is the length of the longest
simple path in the state space, as a completeness threshold
for bounded model checking of liveness properties. Identi-
fying and computing completeness thresholds was consid-
ered an active research area in model checking by Edmund
Clarke (Clarke, Emerson, and Sifakis 2009) in his Turing

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lecture and, indeed, authors have identified completeness
thresholds for many involved kinds of model checking prob-
lems (Kroening et al. 2011; Bundala, Ouaknine, and Worrell
2012).

Optimal planning is a variant of planning where the solu-
tion has to be optimal, according to some measure of op-
timality. There has been multiple compilations of various
types of optimal planning to SAT, satisfiability modulo theo-
ries (SMT), and maximum satisfiability formalisms (Büttner
and Rintanen 2005; Giunchiglia and Maratea 2007; Robin-
son et al. 2010; Muise, Beck, and McIlraith 2016; Leofante
et al. 2020). Many of the existing compilations tackle opti-
mality criteria of different variants of the length of the plan.
Nonetheless, a particularly interesting optimality criterion
is plan cost, which has been the primary optimality crite-
rion in planning competitions since 2008 (Gerevini et al.
2009). A gap in the literature seems to be a practical com-
pleteness threshold for cost optimal planning problems that
have actions with 0-cost. This is one hurdle to the applica-
tion of SAT-based planning to such problems, since without
a reasonable completeness threshold, optimality can only be
proved after solving the compilation for a horizon that is
the number of states in the state space. This is impractical
for most problems since it can be exponentially bigger than
the size of the given problem. It should be noted that some
approaches try to circumvent the need for a tight complete-
ness threshold, such the ones by Robinson et al. and Leo-
fante et al., which add an over-approximation of the tran-
sition relation underlying the planning problem to the en-
coding. Optimality of a given solution is then proved when
this over-approximation is unsatisfiable. Nonetheless, these
approaches still need to compute compilations for multiple
horizons and they are suscepteble to having to solve com-
pilations for the same exponential horizon, since the over-
approximation is generally incomplete, i.e. it could be solv-
able even if the concrete system is not solvable.

In this work we try to address that gap, and study the suit-
ability of different state space topological properties for be-
ing completeness thresholds for cost optimal planning with
actions with 0-cost. We identify a completeness threshold
that can be practically bounded, and show that no tighter
completeness threshold can be computed for a given prob-
lem without exploiting cost information, the initial state, or
the goal. To test the practical utility of this completeness

threshold, we devise a SAT compilation for cost optimal
planning, and use that in an any-time planning as satisfiabil-
ity algorithm, where the horizon is fixed from the beginning
to the completeness threshold. This algorithm starts with an
upper bound on the total cost and improves that cost upper
bound every iteration. Experiments show that the algorithm
is able to compute plans with costs better than the initial
costs, and in many cases it can compute plans whose cost
matches the optimal cost. Furthermore, the algorithm is able
to prove the optimality of certain costs for a number of in-
stances, some of which could not be proven optimal by the
widely used LM-cut planning heuristic.

Background and Notation
Let v 7→ b denote a maplet. A mapping f is a finite set of
maplets s.t. if v 7→ a1 ∈ f and v 7→ a2 ∈ f , we have that
a1 = a2. We write D(f) to denote {v | (v 7→ a) ∈ f},
the domain of f . We define f(v) to be a if v 7→ a ∈ f , and
otherwise it is undefined. The composition of two mappings
f and g, denoted as f ◦ g, is defined to be f ◦ g = f(g(x)).
In the rest of this paper, we use | • | to denote the cardinality
of a set or the length of a list.

We consider planning problems where actions have costs.
Such problems are specified in terms of a factored transition
system, which is a set of actions, an initial state, a goal, and
a cost mapping that assigns costs to actions.

Definition 1 (States and Actions). A state, x, is a mapping
from state-characterising propositions to Booleans, i.e. ⊥
or >. For states x1 and x2, the union, x1] x2, is defined as
{v 7→ b | v ∈ D(x1) ∪ D(x2) ∧ if v ∈ D(x1) then b =
x1(v) else b = x2(v)}. Note that the state x1 takes prece-
dence. An action is a pair of states, (p, e), where p rep-
resents the preconditions and e represents the effects. For
action π = (p, e), the domain of that action is D(π) ≡
D(p) ∪ D(e).

Definition 2 (Execution). When an action π (= (p, e)) is
executed at state x, it produces a successor state π(x), for-
mally defined as π(x) = if p * x then x else e] x. We
lift execution to lists of actions

→
π , so

→
π (x) denotes the state

resulting from successively applying each action from
→
π in

turn, starting at x.

We give examples of states and actions using sets of lit-
erals, where we denote the maplet a 7→ > with the literal a
and a 7→ ⊥ with the literal a. For example, ({a, b}, {c}) is
an action that if executed in a state where a is true and b is
false, it sets c to true. D(({a, b}, {c})) = {a, b, c}. We also
give examples of sequences, which we denote by the square
brackets, e.g. [a, b, c].

Definition 3 (Factored Transition System). A set of actions
δ constitutes a factored transition system. D(δ) denotes the
domain of δ, which is the union of the domains of all the
actions in δ. Let set(

→
π) be the set of elements in

→
π . The set

of valid action sequences, δ∗, is {→π | set(
→
π) ⊆ δ}. The set

of valid states, U(δ), is {x | D(x) = D(δ)}.

v1v2

v1v2 v1v2

v1v2

(a)

v1v2

v1v2 v1v2

v1v2

(b)

v1v2

v1v2 v1v2

v1v2

(c)

Figure 1: The state spaces of the systems from the different
examples.

Example 1. Consider the factored system δ ≡ {π1 = (∅,
{v1, v2}), π2 = (∅, {v1, v2}), π3 = (∅, {v1, v2}), π4 = (∅,
{v1, v2})}. Figure 1a shows the state space of δ1, where dif-
ferent states defined on the variables D(δ1) = {v1, v2} are
shown. Since every state can be reached via one action from
every other state, the state space is a clique.
Definition 4 (Planning Problem). A planning problem Π is
a tuple (δ, C, I, G), where δ is a factored transition system,
I is a state s.t. I ∈ U(δ), G is a state s.t. G ⊆ D(δ), and C is
a mapping from δ to N. We refer to the different components
of Π as Π.δ, Π.C, Π.I, and Π.G, but when it is unambiguous
we only use δ, C, I, and G. A solution to Π is an action
sequence

→
π ∈ δ∗ s.t. G ⊆ →

π (I). We define the function
C∗ from δ∗ to N s.t. C∗([]) = 0, and C∗([π1, π2, . . .]) =
C(π1)+C∗([π2, . . .]). An optimal solution to Π is a solution
→
π s.t. C∗(→π) ≤ C∗(→π

′
), for any other solution

→
π
′

of Π. For
any mapping f from N to N, we denote by f(Π) the planning
problem (δ, f ◦ C, I, G)

Example 2. Let C = {πi 7→ 1 | 1 ≤ i ≤ 4} be a cost map-
ping. A planning problem Π is (δ1, C, {v1, v2}, {v1, v2}). A
solution for Π is [π2, π1], where C∗([π2, π1]) = 2. An opti-
mal solution for Π is [π1], where C∗([π1]) = 1.
Definition 5 (Completeness Threshold). A natural number
CT is a completeness threshold for planning problem Π iff
for any solution

→
π of Π there is a solution

→
π
′

s.t. |→π
′
| ≤ CT

and C∗(→π
′
) ≤ C∗(→π).

An evident use for a completeness threshold is in methods
for finding cost optimal plans based on compilation to con-
straints, where one would at most need to unfold the tran-
sition relation in the compilation as many times as a com-
pleteness threshold for the given problem.

There are multiple possible values that could act as com-
pleteness thresholds for a planning problem. The following
propositions characterise three such thresholds.

Proposition 1. For any planning problem Π, 2|D(δ)| − 1 is
a completeness threshold for Π.

Proposition 2. For any planning problem Π, if
→
π is a solu-

tion for the problem and if C(π) = 1 for every π ∈ δ, then
|→π | is a completeness threshold for Π.

Proposition 3. For any planning problem Π, if
→
π is a solu-

tion for the problem and if C(π) 6= 0 for every π ∈ δ, then
bC∗(→π)/cminc is a completeness threshold for Π, where cmin
denotes min

π∈δ
C(π).

The three above completeness thresholds are either too
loose to be of any practical use, or do not hold for plan-
ning problems in general. In the next section we study tighter
completeness thresholds for planning problems that can be
used with more general planning problems.

Different Completeness Thresholds
As stated earlier, topological properties of the state space
have been employed as completeness thresholds for plan-
ning and model checking. In this section we study the suit-
ability of different topological properties as completeness
thresholds for planning.

The diameter
One such topological property is the diameter, suggested by
Biere et al. 1999, which is the length of the longest shortest
path between any two states in the state space of a system.
Definition 6 (Diameter). The diameter, written d(δ), is the
length of the longest shortest action sequence, formally

d(δ) = max
x∈U(δ),→π∈δ∗

min
→
π (x)=

→
π
′
(x),
→
π
′
∈δ∗
|→π
′
|

Example 3. For the transition system δ from Example 1, the
diameter is 1 because any state can be reached from any
other state with one action.

Note that if there is a valid action sequence between any
two valid states of δ, then there is a valid action sequence be-
tween them, which is not longer than d(δ). Thus it is a com-
pleteness threshold for bounded model-checking and SAT-
based planning. There are many features of the diameter that
would make it a practically viable completeness threshold.
First, it is the tightest topological property of state spaces
that has been studied. Secondly, although the worst-case
complexity of computing the diameter for a succinct graph
is ΠP

2 -hard (Hemaspaandra et al. 2010), there are practical
methods that can compositionally compute upper bounds
on the diameter (Baumgartner, Kuehlmann, and Abraham
2002; Rintanen and Gretton 2013; Abdulaziz, Gretton, and
Norrish 2015, 2017). Unfortunately, the diameter is not a
completeness threshold for cost optimal planning, as shown
in the following example.
Example 4. Consider the factored system δ ≡ {π1 ≡
({v1, v2}, {v1, v2}), π2 ≡ ({v1, v2}, {v1, v2}), π3 ≡
({v1, v2}, {v1, v2})}. Consider the cost mapping C ≡
{π1 7→ 1, π2 7→ 1, π3 7→ 3} where the transitions are la-
belled with the costs of the corresponding actions. Consider
a planning problem Π ≡ (δ, C, {v1, v2}, {v1, v2}). The di-
ameter of that system is 1, but there is a plan of length 2
whose cost is less than any plan whose length is bounded by
the diameter.

The recurrence diameter
Another topological property that has been used as a com-
pleteness threshold for different model checking problems
is the recurrence diameter, which is the length of the longest
transition sequence in the state space of a transition system
that does not traverse the same state twice. It was proposed
by Biere et al. 1999 as a completeness threshold.

Definition 7 (Recurrence Diameter). Let distinct(x,
→
π) de-

note that all states traversed by executing
→
π at x are distinct

states. The recurrence diameter is the length of the longest
simple path in the state space, formally

rd(δ) = max
x∈U(δ),→π∈δ∗,distinct(x,

→
π)

|→π |

Example 5. For the system δ from Example 1, the recur-
rence diameter is 3 as there are many paths with 3 actions in
the state space that traverse distinct states, e.g. executing the
action sequence [π1, π2, π3] at the state {v1, v2} traverses
the distinct states [{v1, v2}, {v1, v2}, {v1, v2}, {v1, v2}].

Note that in general the recurrence diameter is an upper
bound on the diameter, and that it can be exponentially larger
than the diameter (Biere et al. 1999). However, it can still
be exponentially smaller than the number of states in the
state space, which would make it a practically useful com-
pleteness threshold. The recurrence diameter is a complete-
ness threshold for SAT-based planning and bounded model-
checking of safety properties, as well as bounded model-
checking of liveness properties, which was the original rea-
son for its inception (Biere et al. 1999).
Theorem 1. For any planning problem Π, rd(δ) is a com-
pleteness threshold for Π.

Proof. The proof depends on the following proposition.

Proposition 4. For an action sequence
→
π ∈ δ∗, if

distinct(x,
→
π), then |→π | ≤ rd(δ).

We now show that, given
→
π ∈ δ∗ and a state x ∈ U(δ), there

is an action sequence
→
π
′
s.t. C∗(→π

′
) ≤ C∗(→π), |→π

′
| ≤ rd(δ),

and
→
π (x) =

→
π
′
(x). We do that by complete induction on

→
π .

The induction hypotheses would then state that there is such
an
→
π
′

that can be derived for each
→
π 0, if |→π 0| < |

→
π |. If

distinct(x,
→
π) holds, then the proof is finished by Propo-

sition 4. Otherwise, there are action sequences
→
π 1,

→
π 2,

and
→
π 3, s.t.

→
π 2 is not empty,

→
π =

→
π 1_

→
π 2_

→
π 3, and

→
π 1(x) =

→
π 1_

→
π 2(x), where _ denotes list appending.

Since
→
π (x) =

→
π 1_

→
π 3(x), the proof is finished by applying

the induction hypothesis to
→
π 1_

→
π 3.

A problem with using the recurrence diameter as a com-
pleteness threshold is that the complexity of computing it
is NP-hard (Pardalos and Migdalas 2004) for explicitly rep-
resented digraphs, and that complexity is NEXP-hard (Pa-
padimitriou and Yannakakis 1986) for succinctly repre-
sented digraphs, like STRIPS (Fikes and Nilsson 1971).
Practically, the existing methods to compute the recurrence
diameter have a doubly exponential worst case running
time (Kroening and Strichman 2003; Abdulaziz and Berger
2021), and they are only useful when applied to small ab-
stractions in the context of compositionally computing upper
bounds on other topological properties. Furthermore, there
is not a compositional algorithm that can compute upper
bounds on the recurrence diameter using abstractions recur-
rence diameter. Accordingly, the recurrence diameter cannot

be practically used as a completeness threshold due to the
absence of a practical way to compute it or tightly bound it.

The traversal diameter
Another topological property that was studied in the litera-
ture is the traversal diameter which was introduced by Ab-
dulaziz 2019. The traversal diameter is one less than the
largest number of states that could be traversed by any path.

Definition 8 (Traversal Diameter). Let ss(x,
→
π) be the set of

states traversed by executing
→
π at x. The traversal diameter

is
td(δ) = max

x∈U(δ),→π∈δ∗
|ss(x,

→
π)| − 1.

Example 6. Consider a factored system whose state space
is shown in Figure 1b. For this system, the traversal diamter
and the recurence diameter are both 1. Consider another
factored system whose state space is shown in Figure 1c.
For this system, the traversal diamter is 3 and the recurence
diameter is 2.

Abdulaziz 2019 showed that the traversal diameter is an
upper bound on the recurrence diameter. Since the traver-
sal diameter is an upper bound on the recurrence diameter,
it is then a completeness threshold. He also showed that it
can be exponentially smaller than the number of states in
the state space, and that it can be exponentially larger than
the recurrence diameter. Computing the traversal diameter
can be done in a worst case running time that is linear in the
size of the state space, which is exponentially better than the
time needed to compute the recurrence diameter. Further-
more, the traversal diameter is compositionally is via par-
titioning the set of state variables: an upper bound on the
traversal diameter is the product of the traversal diameters of
the different projections of the problem’s factored transition
system on each of the state variables equivalence classes. Al-
though the traversal diameter has the advantage of relatively
easy computation with a compositional bounding method,
the fact that the traversal diameter is bounded by multiplying
all projection traversal diameters leads to computing bounds
that are too loose to be of practical value.

The sublist diameter
Another topological property that can be used as a complete-
ness threshold is the sublist diameter, defined below.

Definition 9 (Sublist Diameter). A list
→
π
′

is a sublist of
→
π ,

written
→
π
′
�· →π , iff all the members of

→
π
′

occur in the same
order in

→
π . The sublist diameter, `(δ), is the length of the

longest shortest equivalent sublist to any action sequence
→
π ∈ δ∗ starting at any state x ∈ U(δ). Formally,

`(δ) = max
x∈U(δ),→π∈δ∗

min
→
π (x)=

→
π
′
(x),
→
π
′
�·→π
|→π
′
|.

Example 7. Consider the factored system δ from Example 1.
For that system the sublist diameter is 1, since for any

→
π ∈

δ∗, executing the last action in
→
π will reach the same state

reached by executing δ.

The sublist diameter was first conceived by (Abdulaziz,
Gretton, and Norrish 2015) for theoretical purposes, where
it was used to show that the diameter can be upper bounded
by the projections’ topological properties, if the projections
were induced by an acyclic variable dependency graph. The
way they showed that was by showing that (i) the sublist
diameter is an upper bound on the diameter, (ii) the sublist
diameter is a lower bound on the recurrence diameter, and,
most importantly, (iii) that the sublist diameter can be up-
per bounded by projections’ sublist diameters. Those three
properties would make the sublist diameter a very appealing
completeness threshold, since it is relatively tight and since
it can be upper bounded practically via compositional meth-
ods. The following theorem shows that the sublist diameter
is indeed a completeness threshold.

Theorem 2. For any planning problem Π, `(δ) is a com-
pleteness threshold for Π.

Proof. The proof depends on the following proposition.

Proposition 5. For any δ, x ∈ U(δ), and
→
π ∈ δ∗, there is

an
→
π
′

s.t.
→
π
′
�· →π , |→π | ≤ `(δ), and

→
π (x) =

→
π
′
(x).

Given a solution
→
π for Π, we obtain

→
π
′
, which is the witness

of Proposition 5. Since
→
π
′
�· →π , we have that the cost of

C∗(→π
′
) ≤ C∗(→π). This finishes our proof.

The subset diameter
As we stated earlier, the sublist diameter has many advan-
tages as completeness threshold, in particular that it is rel-
atively tight and that it has effective methods to compute
upper bounds on it. In this section we study how tight can a
computed completeness threshold be. Consider the follow-
ing topological property.

Definition 10 (Subset Diameter). A list
→
π
′

is a subset of
→
π ,

written
→
π
′
⊆ →π , iff all the members of

→
π
′

occur in
→
π . The

subset diameter, S (δ), is the length of the longest shortest
equivalent subset to any action sequence

→
π ∈ δ∗ starting at

any state x ∈ U(δ). Formally,

S (δ) = max
x∈U(δ),→π∈δ∗

min
→
π (x)=

→
π
′
(x),
→
π
′
⊆→π
|→π
′
|.

Example 8. Consider the factored system {π1 ≡
(∅, {v1, v3}), π2 ≡ (∅, {v1, v2}), π3 ≡ (∅, {v1})}. The sub-
list diameter of this system is 3, because there is not a sublist
of the action sequence [π1, π2, π3] that can reach the state
{v1, v2, v3} from {v1, v2, v3}. On the other hand, the sub-
set diameter of this system is 2, since [π2, π1] is a subset of
[π1, π2, π3] that can reach {v1, v2, v3} from {v1, v2, v3}.

It should be clear that the following holds.

Proposition 6. For any δ, d(δ) ≤ S (δ) ≤ `(δ).

Furthermore, using an argument similar to the one used to
prove Theorem 5, we have the following.

Theorem 3. For any planning problem Π, S (δ) is a com-
pleteness threshold for Π.

More interestingly, we show that the subset diameter is
the smallest completeness threshold that can be computed
for a planning problem, if the action costs and the initial and
goal states are not taken into consideration.

Theorem 4. For any factored transition system δ, there is a
planning problem Π s.t. Π.δ = δ and there is a solution

→
π

for Π s.t. |→π | = `(δ) and for any solution
→
π
′
, if |→π

′
| < |→π |,

then C∗(→π
′
) > C∗(→π).

Proof. Our proof depends on the following proposition.

Proposition 7. For any factored transition system δ, there
is a state x ∈ U(δ) and an action sequence

→
π ∈ δ∗ s.t.

|→π | = S (δ) and there is not any action sequence
→
π
′

s.t.
→
π
′
⊆ →π and

→
π (x) =

→
π
′
(x) and |→π

′
| < |→π |.

Obtain a state x0 and an action sequence
→
π 0 that are the

witnesses for Proposition 7. Let C = {π 7→ 0 | π ∈ →π 0} ∪
{π 7→ 1 | π 6∈ →π 0}. We now construct the required planning
problem Π by letting x0 be its initial state,

→
π (x0) be its goal,

δ be its factored transition system and C be its cost function.
It should be clear that

→
π 0 is a plan for Π. Since x0 and

→
π 0 are

the witnesses of Proposition 7, we have that any solution
→
π
′

for Π that is shorter than
→
π 0 will have at least an action not

from
→
π 0. Accordingly, we have that C∗(→π 0) < 1 ≤ C∗(→π

′
),

which finishes our proof.

In this section we primarily focused on the theoretical
limit on the tightness of the completeness thresholds and
thus devised the subset diameter and showed that it is the
tightest. We did not consider on whether the subset diame-
ter can be computed or approximated. Proposition 6 shows
that we can use the same methods to bound from Abdu-
laziz et al. to compute a bound on the subset diameter. How-
ever, as shown in Example 8, the subset diameter can be
strictly smaller than the sublist diameter, so an interesting
open question is whether there is an exponential separation
between them, i.e. whether there is a class of factored sys-
tems whose subset diameters are exponentially smaller than
their sublist diameters. If this were true, an interesting ques-
tion is whether there are methods to bound or compute the
subset diameter that can exploit this tightness.

A SAT-Encoding for Planning with Costs
To experimentally test the above completeness thresholds,
we devise a simple SAT-based encoding of planning with
action costs. The core idea of this encoding is to embed ac-
tion costs into the transition relation by compiling them to
their binary representation, effectively keeping track of the
plan cost as a part of the state. Previously, more Consider the
following compilation of a factored system.

Definition 11 (Augmented System). Let, for a natural
number n, Dn denote the indexed set of state variable
{u1, u2, . . . , udlogne}. Let xni denote the state defined by as-
signing all the state variables Dn, s.t. their assignments bi-
nary encode the natural number i, where the index of each

variable from Dn represents its endianess. Note:xni is well
defined for 0 ≤ i ≤ 2dlogne − 1. For an action π, natural
numbers C, c, and i, the augmented action πCi,c, is defined
as (p] xCi , e] xCi+c). For a factored system δ, a natural
number C, and a function f mapping elements of δ to nat-
ural numbers, the augmented factored system δCf is defined
as {πCi,f(π) | π ∈ δ ∧ 0 ≤ i ≤ C − f(π)}.

Intuitively, interpreting the function f as a cost function
for actions, the augmented factored system is a cost bounded
version of the given system, where paths can have at most
cost C. This is shown in the following example.

Example 9. Consider the factored system and the
cost function from Example 4. The augmented sys-
tem δ2C would be {({v1, v2, u1, u2}, {v1, v2, u1, u2}),
({v1, v2, u1, u2}, {v1, v2, u1, u2}), ({v1, v2, u1, u2}, {v1, v2,
u1, u2}), ({v1, v2, u1, u2}, {v1, v2, u1, u2})}.

Note that the factored system in the above example will
only have paths that, when mapped to the original system,
will have a cost of at most 2. Indeed, we have the following
theorem which shows how searching for an action sequence
whose cost is bounded can be done by searching for any
action sequence.

Theorem 5. For a system δ, a mapping C from δ to natural
numbers, states x, x′ ∈ U(δ), and natural numbers l and i,
there is an action sequence

→
π ∈ δ∗ s.t. C∗(→π) ≤ C, |→π | = l,

and x′ ⊆ →π (x) iff there is an action sequence
→
πC ∈ δCC

∗

s.t. |→πC | = l, and x′ ⊆ →πC(x] xC+i
i)

Proof. (⇒) We prove this by induction on
→
π . The base case

is trivial. The step case states that
→
π = [π]_

→
π 0, and the

induction hypothesis states that the theorem statement ap-
plies to

→
π 0. Accordingly, we can obtain an action sequence

→
πC by applying the induction hypothesis, after substituting
π(x) for x,

→
π (x) for x′, |→π 0| for l, C − C(π) for C, and

C(π) for i, s.t.
→
πC ∈ δCC

∗, |→πC | = |→π 0|, and
→
π (x) ⊆

→
πC(π(x)] xCC(π)). Since π(x)] xCC(π) = πC0,C(π)(x] x

C
0),

we have our proof.
(⇐) Before we prove this direction, let x�vs denote the

projection of a state on a set of variables vs , i.e. {v 7→ b |
v ∈ vs ∧ v 7→ b ∈ x}. Our proof for this direction of the
theorem statement is by induction on

→
πC . Again, the base

case is trivial. The step case states that
→
πC = [π]_

→
π 0,

and the induction hypothesis states that the theorem state-
ment applies to

→
π 0. Note that there is an action π′ ∈ δ s.t.

π = π′
C+i
i,C(π). We can obtain an action sequence

→
π by apply-

ing the induction hypothesis, after substituting π′(x) for x,
→
πC(x)�D(δ) for x′, |→π 0| for l,C−C(π′) forC, and C(π′) for

i, s.t.
→
π ∈ δ∗, |→π | = |→π 0|, C∗(

→
π) ≤ C −C(π′) and

→
π (x) ⊆

→
πC(π(x)] xCC(π)). Since π′(x)] xCC(π) = π(x] xC0), we
have our proof.

The theorem above enables solving a bounded cost plan-
ning problem with satisficing planning methods.

Madagascar Kissat Total LM-cut
No Symmetry Breaking Symmetry Breaking

Seq ∀ ∃ Seq ∀ ∃ Seq ∀ ∃
Domain UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT SAT

logistics (406) 61 29 29 13 29 13 62 29 62 29 41 41 56 33 55 37 56 37 63 29 63 29 216 41 221 35 37 33 37 30 236 41 83 46 0
rover (30) 14 4 5 4 6 4 15 4 16 4 11 4 13 4 9 4 11 4 13 4 14 4 9 4 9 4 7 4 6 4 20 4 11 10 0

nomystery (24) 11 10 5 2 5 2 11 10 11 10 10 10 10 10 10 10 11 10 11 9 11 9 9 10 9 10 7 6 7 6 11 10 6 3 7
zeno (50) 19 15 9 7 13 7 19 15 19 15 19 13 19 13 20 11 19 13 22 15 22 15 35 13 35 13 18 11 22 11 40 15 28 21 0

hiking (20) 7 5 3 1 2 1 7 5 7 5 5 5 5 4 5 5 5 4 7 5 7 5 10 — 10 — 4 2 4 2 16 5 5 1 4
Transport (40) — — — — — — — — — — — — — — — 1 — 1 9 — 9 — 32 — 32 — 7 — 8 — 33 1 8 0 1

woodworking (20) 2 — 1 — 2 — 3 — 7 — 4 — 6 — 4 — 5 — 3 — 5 — 2 — 2 — 1 — 1 — 9 0 11 0 0
visitall (50) 42 17 15 8 15 8 42 17 42 17 20 14 22 14 20 14 22 14 42 17 42 17 20 15 25 15 20 15 25 15 42 17 16 16 1
satellite (10) 6 4 6 4 6 3 8 5 10 5 9 5 10 5 9 5 10 4 9 5 10 5 9 6 9 5 7 5 7 4 10 6 10 9 0

scanalyzer (20) 1 1 1 — 2 1 3 1 4 1 3 1 3 1 3 1 3 1 6 1 6 1 9 1 10 1 3 1 3 1 11 1 8 3 1
tidybot (47) 16 10 7 1 7 1 16 10 16 10 8 1 8 1 8 1 8 1 13 9 13 9 7 7 7 7 8 7 7 7 16 10 24 13 0
trucks (2) 2 — — — — — 2 — 2 — — — 2 — 2 — 2 — 2 — 2 — — — — — — — — — 2 0 2 0 0

maintenance (5) 5 5 5 3 5 3 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 5
Parking (40) — 38 — 39 — — — — — 39 0 2 0 0
floortile (14) — — — — — — 1 — 2 — — — 1 — 2 — 3 — — — 1 — 1 — 1 — — — — — 3 0 8 0 0
barman (22) 2 1 — — — — 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 — — — — 3 1 1 1 0

Table 1: Each column represents a configuration of SAT encoding and SAT solving and shows two numbers: the number of
problems for which the cost was improved, and the number of problems for which a certain cost was proved optimal. The first
column has the domain name and the number of instances for which Fast Downward was able to compute an upper bound, and
the domain name is bold if it has instances with 0-cost actions. Columns 2-4 represent data problems solved with Madagascar’s
SAT-solver, where each column represents one encoding. The next 12 columns represent data for problems solved using Kissat,
with and without symmetry breaking, and for the two configurations of Kissat, SAT and UNSAT. The second to last column
represents the number of different problems whose initial cost was improved by all combinations, and those proven to be
optimal. The last column shows (i) how many problems were optimally solved by Fast Downward using the LM-cut heuristic,
(ii) on how many problems does Algorithm 1 match the optimal cost as computed by LM-cut, and (iii) for how many instances
could Algorithm 1 prove a cost is optimal, where LM-cut failed.

Definition 12 (Augmented Problem). For a planning prob-
lem Π, a natural number C, the augmented planning prob-
lem ΠC is defined as (δCC , C, I] xC0 , G).

Corollary 1. For a system Π and a natural number l, there
is a solution

→
π for Π s.t. C∗(→π) ≤ C and |→π | = l iff there is

a solution
→
πC for ΠC s.t. |→πC | = l.

Any-Time SAT-Based Optimal Planning
To find an optimal plan, we need to iteratively decrement
the cost bound until no plan is found. A challenge to doing
that is that the size of the augmented system is a factor of
C larger than the original system, where C is the cost upper
bound. One way to circumvent this size increase employs
the following proposition.

Proposition 8. For a set of natural numbers N , let gcd(N)
denote their greatest common divisor. For a planning prob-
lem Π let gcd(Π) denote gcd({C(π) | π ∈ δ}). An action
sequence

→
π is a solution for Π with cost C iff

→
π is a solu-

tion for Π/ gcd(Π) with cost bC/ gcd(Π)c.
Using the above proposition to scale down the action cost

bound dramatically limits the blow up in the size of the aug-
mented factored systems for many domains. Another way
to limit the size of the augmented factored system is by fac-
toring the actions of the augmented system.

Algorithm 1 is the overall algorithm that we use. It is
an any time algorithm that, given an initial plan, computes

plans with improving costs until the optimal cost is reached.
That algorithm assumes that there is a SAT-based procedure
solve that computes a satisfiscing plan, given a planning
problem and a horizon. It also assumes that there is a pro-
cedure factor that factors actions in a planning problem,
i.e. if there are two actions π1 and π2 s.t. π1 = ({v} ∪ p, e)
and π2 = ({v} ∪ p, e) in δ, both of the actions are removed
and replaced by (p, e), where this is greedily done until a
fixed point is reached. Lastly, it also uses a function to com-
pute the completeness threshold with every iteration since
the completeness threshold might change depending on the
current plan cost, if the problem has all unit cost actions
(Proposition 2), or if it has no 0-cost actions (Proposition 3).
That function is specified in the following corollary.

Corollary 2. For a planning problem Π and a solution
→
π

for Π, let CT (
→
π ,Π) be |→π | if C(π) = 1 for every π ∈ δ,

bC∗(→π)/cminc if C(π) 6= 0 for every π ∈ δ, and `(δ) other-
wise. A completeness threshold for Π is CT (

→
π ,Π).

Experimental Evaluation
We experimentally test Algorithm 1 to investigate how ca-
pable it is to (i) find plans with better costs than the initial
plan, (ii) find plans with optimal costs, and (iii) show that a
plan is an optimal plan. We implement the function solve by
computing the a SAT encoding using the SAT-based planner
Madagascar (Rintanen, Heljanko, and Niemelä 2006), where

Algorithm 1: Input: plan
→
π and a problem Π.

→
π
′

:=
→
π

while →π
′
6= none

→
π :=

→
π
′

Π′ := factor((Π/ gcd(Π))bC
∗(
→
π)−1/ gcd(Π)c)

→
π
′

:= solve(Π′, CT (
→
π ,Π))

return →π

we try the three different possible encodings computed by
Madagascar: the sequential, the ∀-step, and the ∃-step en-
codings. To solve the formulae resulting from these encod-
ings, we use the SAT solver of Madagascar and the state-of-
the-art SAT solver Kissat (Biere et al. 2020). Furthermore,
we use Kissat’s two configurations: SAT and UNSAT, and
we run the experiments once with adding symmetry break-
ing clauses using the tool BreakId (Devriendt et al. 2016)
and once without them. The initial plans are computed by the
planner Fast Downward (Helmert 2006) with the FF heuris-
tic (Hoffmann and Nebel 2001). To compute completeness
threshold when there are action with 0-cost, instead of com-
puting the sublist diameter, we use upper bounds computed
using previously published methods (Abdulaziz, Gretton,
and Norrish 2017; Abdulaziz 2019; Abdulaziz and Berger
2021). The initial plan computation, completeness thresh-
old computation, and the execution of Algorithm 1 are given
1800s timeout and 4GB memory limit. As a baseline, we
use Fast Downward with the LM-cut heuristic (Pommeren-
ing and Helmert 2012) to compute optimal plans, with the
same time and memory limits.

Table 1 shows the coverage of the different configurations
of SAT encoding and SAT solving. It shows that none of
the configurations is consistently the best in all domains,
whether in terms of proving optimality, or improving the ini-
tial cost. Nonetheless, it seems to always that configurations
using Kissat as a SAT solver outperform the configurations
where Madagascar’s SAT solver is used in more domains.
Also it seems that the different configurations are comple-
mentary to each other within each of the domains, which is
why the total number of solved instances is better than the
number of instances solved by any individual configuration
in 10 domains out of 16.

Another point to note is that, overall, Algorithm 1 proves
optimality for less problems than Fast Downward with the
LM-cut heuristic. Interestingly, nonetheless, Algorithm 1 is
able to prove optimality on instances on which LM-cut fails
like in NoMystery, Hiking, Transport, Visitall, Scanalyzer,
and Maintenance. We note that all of these domains have no
0-cost actions. Furthermore, Algorithm 1 is able to compute
plans with costs that match those computed using LM-cut,
but without being able to prove that these are the optimal
costs. This is the case in Logistics, Rover, Zeno, Satellite,
Scanalyzer, and TidyBot.

To get a more fine-grained view of the quality of com-
puted plans, the plot in Figure 2 shows the cost of the cheap-

est plan computed by all of the configurations and compares
it to the cost of the initial plan. In this plot, we have restricted
ourselves to problems where the initial bound was at most
100 to preserve readability of the plots. The problems shown
in that figure show that the costs are significantly improved
for many of the domains.

Figure 2: Comparison of costs of initial plans computed by
Fast Downward with FF vs Algorithm 1.

Discussion
In this work we have investigated different completeness
thresholds for cost optimal planning. These completeness
thresholds enable more applicability of SAT-based planning
techniques to cost optimal planning, in particular to prob-
lems that have actions with cost 0. We devised a simple
SAT-based technique that effectively operates by compiling
away action costs into action effects. Experimental results
using our method show reasonable performance. Although
its coverage is less than state-of-the-art A* based optimal
planners, using SAT-based techniques for cost optimal plan-
ning problems has multiple advantages. E.g. it is very easy
to obtain a certificate of optimality if the SAT solver proves
a certain cost is optimal, which is a problem that recently at-
tracted attention (Eriksson, Röger, and Helmert 2017). Also,
it can be easily adapted to generating different plans with
the same cost, namely, by adding constraints to the SAT-
encoding that prohibit a given plan, which is another inter-
esting problem (Katz et al. 2018).

There are multiple interesting future directions in which
this work can be further pursued. First the upper bounds
could be improved by either incorporating the action costs,
initial state, or goal. Another interesting problem is to find
whether there is an exponential separation between the sub-
set diameter and sublist diameter and, if there is one, inves-
tigating methods to compute or bound the subset diameter.
The encoding can also be improved by employing approx-
imate methods when compiling the costs, e.g. the method
by Hoffmann et al. 2007 could be adapted to compiling
costs. Also, since our experiments show that the different
combinations of SAT-encoding and SAT solving are com-

plementary, a portfolio approach can be used to optimise the
used combination for different instances.

References
Abdulaziz, M. 2019. Plan-Length Bounds: Beyond 1-way
Dependency. In AAAI.
Abdulaziz, M.; and Berger, D. 2021. Computing Plan-
Length Bounds Using Lengths of Longest Paths. In AAAI.
Abdulaziz, M.; Gretton, C.; and Norrish, M. 2015. Veri-
fied Over-Approximation of the Diameter of Propositionally
Factored Transition Systems. In ITP.
Abdulaziz, M.; Gretton, C.; and Norrish, M. 2017. A State
Space Acyclicity Property for Exponentially Tighter Plan
Length Bounds. In ICAPS.
Baumgartner, J.; Kuehlmann, A.; and Abraham, J. 2002.
Property Checking Via Structural Analysis. In CAV.
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic Model Checking without BDDs. In TACAS.
Biere, A.; Fazekas, K.; Fleury, M.; and Heisinger, M. 2020.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
Entering the SAT Competition 2020. In Balyo, T.; Froleyks,
N.; Heule, M.; Iser, M.; Järvisalo, M.; and Suda, M., eds.,
SAT Competition – Solver and Benchmark Descriptions.
Bundala, D.; Ouaknine, J.; and Worrell, J. 2012. On the
magnitude of completeness thresholds in bounded model
checking. In LICS.
Büttner, M.; and Rintanen, J. 2005. Satisfiability Planning
with Constraints on the Number of Actions. In ICAPS.
Clarke, E. M.; Emerson, E. A.; and Sifakis, J. 2009. Turing
Lure: Model Checking–Algorithmic Verification and De-
bugging. Communications of the ACM .
Devriendt, J.; Bogaerts, B.; Bruynooghe, M.; and Denecker,
M. 2016. Improved Static Symmetry Breaking for SAT. In
SAT.
Eriksson, S.; Röger, G.; and Helmert, M. 2017. Unsolvabil-
ity Certificates for Classical Planning. In Barbulescu, L.;
Frank, J.; Mausam; and Smith, S. F., eds., ICAPS.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. AI .
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic Planning In The Fifth In-
ternational Planning Competition: PDDL3 And Experimen-
tal Evaluation Of The Planners. AI .
Giunchiglia, E.; and Maratea, M. 2007. Planning as Satisfi-
ability with Preferences. In AAAI.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR .
Hemaspaandra, E.; Hemaspaandra, L. A.; Tantau, T.; and
Watanabe, O. 2010. On the Complexity of Kings. TCS .
Hoffmann, J.; Gomes, C. P.; Selman, B.; and Kautz, H. A.
2007. SAT Encodings of State-Space Reachability Problems
in Numeric Domains. In IJCAI.

Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14: 253–302.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
Novel Iterative Approach to Top-k Planning. In ICAPS.
Kautz, H. A.; and Selman, B. 1992. Planning as Satisfiabil-
ity. In ECAI.
Kroening, D.; Ouaknine, J.; Strichman, O.; Wahl, T.; and
Worrell, J. 2011. Linear Completeness Thresholds for
Bounded Model Checking. In CAV.
Kroening, D.; and Strichman, O. 2003. Efficient Computa-
tion of Recurrence Diameters. In VMCAI.
Leofante, F.; Giunchiglia, E.; Ábrahám, E.; and Tacchella,
A. 2020. Optimal Planning Modulo Theories. In IJCAI.
Muise, C. J.; Beck, J. C.; and McIlraith, S. A. 2016. Optimal
Partial-Order Plan Relaxation via MaxSAT. JAIR .
Papadimitriou, C. H.; and Yannakakis, M. 1986. A Note on
Succinct Representations of Graphs. Information and Con-
trol .
Pardalos, P. M.; and Migdalas, A. 2004. A Note on the Com-
plexity of Longest Path Problems Related to Graph Color-
ing. Applied Mathematics Letters .
Pommerening, F.; and Helmert, M. 2012. Optimal Planning
for Delete-Free Tasks with Incremental LM-Cut. In ICAPS.
Rintanen, J.; and Gretton, C. O. 2013. Computing Upper
Bounds on Lengths of Transition Sequences. In IJCAI.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as Satisfiability: Parallel Plans and Algorithms for Plan
Search. AI .
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2010.
Partial Weighted MaxSAT for Optimal Planning. In PRICAI.

