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Abstract

We investigate compositional bounding of transition system
diameters, with application to bounding the lengths of plans.
We establish usefully-tight bounds by exploiting acyclicity in
state spaces. We provide mechanised proofs in HOL4 of the
validity of our approach. Evaluating our bounds in a range
of benchmarks, we demonstrate exponentially tighter upper
bounds compared to existing methods. Treating both solv-
able and unsolvable benchmark problems, we also demon-
strate the utility of our bounds in boosting planner perfor-
mance. We enhance an existing planning procedure to use our
bounds, and demonstrate significant coverage improvements,
both compared to the base planner, and also in comparisons
with state-of-the-art systems.

Introduction
Core AI planning tasks are to: find a plan which achieves
the goal in a transition system, or otherwise prove that none
exists. The latter also corresponds to the problem of model-
checking safety properties: proving that unsafe states are
unreachable. Solution methods for these tasks benefit from
knowledge of (sub-)system upper bounds on the lengths of
possible plans. If N is such a bound, and if a plan exists
achieving the goal—or violating the safety property—then
that plan need not comprise more than N actions.

Biere et al. (1999) identify the system diameter as a con-
ceptually appealing upper bound. The diameter is the longest
shortest path between any two states. Approximate and ex-
act algorithms have been developed to calculate the diame-
ter given an explicit (e.g. tabular) representation of the sys-
tem. Exact algorithms have worse than quadratic runtimes in
the number of states (Fredman 1976; Alon, Galil, and Mar-
galit 1997; Chan 2010; Yuster 2010), and approximation ap-
proaches have super-linear runtimes (Aingworth et al. 1999;
Roditty and Vassilevska Williams 2013; Chechik et al. 2014;
Abboud, Williams, and Wang 2016). Such explicit calcula-
tion of diameters is prohibitively expensive in the settings of
planning and model-checking, where systems are described
using factored representations, because the systems’ explicit
representation is usually exponential in the size of the corre-
sponding factored problem description.

Practical approaches to calculate bounds for problems
described using factored representations are compositional.
Baumgartner, Kuehlmann, and Abraham (2002) and Rinta-

nen and Gretton (2013) developed procedures to composi-
tionally over-approximate the diameter. Abdulaziz, Gretton,
and Norrish (2015) provide a tighter procedure by optimis-
ing the order of compositional operations. In detail, where
problem descriptions exhibit certain exploitable structures,
compositional approaches provide useful approximations of
diameter using little computational effort. The concrete sys-
tem bound is over-approximated, by composing together
bounds for abstract subsystems which are calculated with
relative ease. The subsystems are projections of the con-
crete system, identified according to acyclic structures in
the causal/dependency graph (Williams and Nayak 1997;
Knoblock 1994). For example, consider the hotel key pro-
tocol from (Jackson 2006, p. 185), which provides a domain
that severely challenges state-of-the-art planning procedures
designed to discover when no plan exists. Each room in
the hotel is independent, in the sense that the state of any
room i, and actions affecting it are independent of all rooms
j 6= i. Compositional bounds scale linearly with the number
of rooms. The sum of bounds for abstract systems modelling
individual rooms is a bound for the concrete system.

We develop a compositional bounding procedure that
combines exploitation of acyclicity in variable dependency
structures described by Abdulaziz et.al., with a novel ap-
proach to exploiting acyclic state spaces. This enables the
decomposition of a given system into abstract sub-systems
that are much smaller than what is attainable using state-
of-the-art algorithms. Compared to existing practical ap-
proaches, ours can yield exponentially tighter bounds. A
(sub-)system has an acyclic state space structure if no state
can be encountered twice during an execution. Although
such acyclicity does not hold for many typical concrete tran-
sition systems, it does occur sufficiently often in the projec-
tions encountered in compositional bounding to be of inter-
est. In the acyclic case, the diameter is bounded by the sum
of the diameters of a series of value-based abstractions we
call snapshots. A snapshot is an abstract subsystem in which
the values of some state variables are fixed. For example, the
hotel protocol is acyclic because each key can only be used
once, for one room, and by one guest. The concrete system
diameter is bound above by the sum of the diameters of each
of the possible subsystems (snapshots) where a particular
key is used to access a particular room.

We experimentally show that our bounding approach sig-



nificantly outperforms—both in the tightness of the bounds
obtained and in the quality of decomposition—existing ap-
proaches. Using the upper bounds computed by that algo-
rithm as horizons for a SAT based planner, we: (i) Prove
the unsolvability of problems that cannot be proven using
the state-of-the-art state space search planners and mod-
el-checkers. One notable example is the problem of mod-
el-checking the safety of the hotel key protocol. (ii) Sig-
nificantly improve the coverage of the SAT based planner
Madagascar MP by using upper bounds rather than its sim-
ple query strategies (Rintanen 2012).

HOL4 Proofs and Availability Theorem 2, Theorem 4
and Proposition 5 are proven in the interactive theorem
prover HOL4 (Slind and Norrish 2008). All our code, Ho-
tel Key benchmarks, and HOL4 proof scripts will be made
available online in the case of acceptance.

Background and Notations
Compositional bounds are defined on factored transition
systems that are purely characterised in terms of a set of ac-
tions. From actions we can define a set of valid states, and
then approach bounds by considering properties of execu-
tions of actions on valid states. Whereas conventional expo-
sitions in the planning and model-checking literature would
also define initial conditions and goal/safety criteria, here we
omit those features from discussion. Our novel bounds, ex-
isting compositional bounds, and the notion of diameter are
independent of those features.
Definition 1 (States and Actions). A maplet, v 7→ b, maps
a variable v—i.e. a state-characterising proposition—to a
Boolean b. A state, x, is a finite set of maplets. We writeD(x)
to denote {v | (v 7→ b) ∈ x}, the domain of x. For states
x1 and x2, the union, x1 ] x2, is defined as {v 7→ b | v ∈
D(x1) ∪ D(x2) ∧ if v ∈ D(x1) then b = x1(v) else b =
x2(v)}. Note that the state x1 takes precedence. An action
is a pair of states, (p, e), where p represents the precondi-
tions and e represents the effects. For action π = (p, e), the
domain of that action is D(π) ≡ D(p) ∪ D(e).
Definition 2 (Execution). When an action π (= (p, e)) is
executed at state x, it produces a successor state π(x), for-
mally defined as π(x) = if p * x then x else e ] x. We
lift execution to lists of actions

→
π , so

→
π (x) denotes the state

resulting from successively applying each action from
→
π in

turn, starting at x.
We give examples of states and actions using sets of lit-

erals. For example, {a, b} is a state where state variables a
is (maps to) true, and b is false and its domain is {a, b}.
({a, b}, {c}) is an action that if executed in a state that has a
and b, it sets c to true. D(({a, b}, {c})) = {a, b, c}.
Definition 3 (Factored Transition System). A set of actions
δ constitutes a factored transition system.We write D(δ) for
the domain of δ, which is the union of the domains of all the
actions it contains. Where set(

→
π ) is the set of elements from

→
π , the set of valid action sequences, δ∗, is {→π | set(

→
π ) ⊆

δ}. The set of valid states, U(δ), is {x | D(x) = D(δ)}. For

states x and x′, x x′ denotes that there is a
→
π ∈ δ∗ such

that
→
π (x) = x′.

Definition 4 (Diameter). The diameter, written d(δ), is the
length of the longest shortest action sequence, formally

d(δ) = max
x∈U(δ),

→
π∈δ∗

min
→
π (x)=

→
π
′
(x),
→
π
′
∈δ∗
|→π
′
|

If there is a valid action sequence between any two states,
then there is a valid action sequence between them that is no
longer than the diameter.

Hotel Key Protocol
We now consider the hotel key protocol from (Jackson
2006). Reasoning about safe and unsafe versions of this
protocol is challenging for state-of-the-art AI planners and
model-checkers. For example, a version of the protocol was
shown unsafe for an instance with 1 room, 2 guests and 4
keys using a counterexample generator in (Blanchette and
Nipkow 2010). The problem becomes more challenging for
the safe version of the protocol, where the only feasible ap-
proach is using interactive theorem provers, as in (Nipkow
2006).

We describe the factored transition system corresponding
to that protocol. The system models a hotel withR rooms,G
guests, and K keys per room, which guests can use to enter
rooms (Figure 1 shows an example with R = 2, G = 2 and
K = 3). The state characterising propositions are: (i) lkr,k,
reception last issued key k for room r, for 0 < r ≤ R and
(r − 1)K < k ≤ rK; (ii) ckr,k, room r can be accessed
using key k, for 0 < r ≤ R and (r − 1)k < k ≤ rK;
(iii) gkg,k, guest g has key k, for 0 < g ≤ G, 0 < k ≤ RK;
and (iv) sr, is an auxiliary variable that means that room
r is “safely” delivered to some guest. The protocol ac-
tions are as follows: (i) guest g can check-in to room r,
receiving key k—({lkr,k1}, {gkg,k2 ,lkr,k2 ,lkr,k1 ,sr});
and (ii) where room r was previously entered us-
ing key k, guest g can enter room r using key
k′—({gkg,k′ ,lkr,k}, {ckr,k′ ,ckr,k,sr}). Thus, guests
can retain keys indefinitely, and there is no direct commu-
nication between rooms and reception.

For completeness, we note that this protocol was formu-
lated in the context of checking safety properties. Safety
is violated only if a guest enters a room occupied by an-
other guest. Formally, the safety of this protocol is checked
by querying if there exists a room r, guest g and keys
k 6= k′, so that lkr,k′ ∧ ckr,k ∧ gkg,k′ ∧ sr. The initial
state asserts that guests possess no keys, and the reception
issued the first key for each room, and each room opens
with its first key. Formally, this is represented by asserting
lkr,(r−1)K ∧ckr,(r−1)K is true for 1 ≤ r ≤ R, (r−1)K <
k ≤ rK, and that all other state variables are false.

We adopt some shorthand notations in order to pro-
vide examples of concepts in terms of the hotel key pro-
tocol. A variable name is written in upper case to refer
to a particular assignment, where the only variable that is
true is given by the indices. For example, the assignment
{ck1,1,ck1,2,ck1,3}—indicating room 1 can be accessed
using key 2—is indicated by writing CK1,2. We refer to sets



of variables by omitting an index term. For example, lk1

indicates the variables {lk1,i | 1 ≤ i ≤ 3}.

Abstraction and Dependency
Key abstraction concepts for compositional reasoning are
projection and snapshot.

Definition 5 (Projection). Projecting an object (a state x,
an action π, a sequence of actions

→
π or a factored represen-

tation δ) on a set of variables vs restricts the domain of the
object or the components of composite objects to vs . Pro-
jection is denoted as x�vs , π�vs ,

→
π �vs and δ�vs for a state,

action, action sequence and factored representation, respec-
tively. However, for action sequences or transition systems,
an action with no effects after projection is dropped entirely.

Example 1. Consider the set of variables ROOM1 ≡ lk1 ∪
ck1 ∪ {gk1,2,gk1,3,gk2,2,gk2,3}. The variables ROOM1
model system state relevant to the 1st hotel room. Figure 1c
shows the projected system δ�ROOM1.

A snapshot models the system when we fix the assignment
of a subset of the state variables, removing actions whose
preconditions or effects contradict that assignment.

Definition 6 (Snapshot). We write |X| to denote the car-
dinality of the set X . For states x and x′, let agree(x, x′)
denote |D(x) ∩ D(x′)| = |x ∩ x′|, i.e. a variable that is in
the domains of both x and x′ has the same assignment in x
and x′. For δ and a state x, the snapshot of δ at x is

δ|•x≡ {(p, e) | (p, e) ∈ δ∧agree(p, x)∧agree(e, x)}�D(δ)\D(x)

Example 2. δ�ROOM1|•CK1,2
is shown in Figure 1d.

Acylicity in variable dependency has been exploited in
previous research by reasoning about dependency (also
called causal) graph from (Williams and Nayak 1997;
Knoblock 1994). We formally describe that graph, review-
ing precisely what is meant by dependency in this setting.

Definition 7 (Dependency). A variable v2 is dependent on
v1 in δ (written v1→v2) iff one of the following statements
holds: 1 (i) v1 is the same as v2, (ii) there is (p, e) ∈ δ such
that v1 ∈ D(p) and v2 ∈ D(e), or (iii) there is a (p, e) ∈ δ
such that both v1 and v2 are in D(e). A set of variables vs2

is dependent on vs1 in δ (written vs1→vs2) iff: (i) vs1 and
vs2 are disjoint, and (ii) there are v1 ∈ vs1 and v2 ∈ vs2,
where v1→v2.

Definition 8 (Dependency Graph). GD(δ) is a dependency
graph of δ, if D(δ) are its vertices and {(u, v) | u→v ∧
u, v ∈ D(δ)} are its edges. GVS is a lifted dependency graph,
if its vertices are some partition P ofD(δ) and {(vs1, vs2) |
vs1→vs2 ∧ vs1, vs2 ∈ P} are its edges.

Example 3. Figure 1b shows a dependency graph asso-
ciated with the system from Figure 1a. Let ROOM2 ≡
lk2∪ck2∪{gk1,5,gk1,6,gk2,5,gk2,6}. Figure 1b depicts
two connected components induced by the sets ROOM1 and
ROOM2, respectively. One lifted dependency graph would

1Our definition is equivalent to those in (Williams and Nayak
1997; Knoblock 1994) in the context of AI planning.

have exactly two unconnected vertices one being a contrac-
tion of the vertices from ROOM1, and the other a contrac-
tion of those from ROOM2. Due to the disconnected struc-
ture of the dependency graph, intuitively the sum of bounds
for δ�ROOM1 and δ�ROOM2 can be used to upper-bound the
diameter of the concrete system.

; check in to a room (at reception), receiving a new key
({lk1,1}, {gk1,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk1,3, lk1,3, lk1,2, s1}),
({lk1,1}, {gk2,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk2,3, lk1,3, lk1,2, s1}),
({lk2,4}, {gk1,5, lk1,5, lk1,4, s2}), ({lk2,5}, {gk1,6, lk1,6, lk1,5, s2}),
({lk2,4}, {gk2,5, lk1,5, lk1,4, s2}), ({lk2,5}, {gk2,6, lk1,6, lk1,5, s2})

; enter a room with new key
({gk1,2}, {ck1,2, ck1,1, s1}), ({gk2,2}, {ck1,2, ck1,1, s1}),
({gk1,3}, {ck1,3, ck1,2, s1}), ({gk2,3}, {ck1,3, ck1,2, s1}),
({gk1,5}, {ck2,5, ck2,4, s2}), ({gk2,5}, {ck2,5, ck2,4, s2}),
({gk1,6}, {ck2,6, ck2,5, s2}), ({gk2,6}, {ck2,6, ck2,5, s2})

(a)
ck1,1ck1,2ck1,3

s1

gk1,2gk2,2gk1,3gk2,3

lk1,1lk1,2lk1,3

ck2,4ck2,5ck2,6

s2

gk1,5gk2,5gk1,6gk2,6

lk2,4lk2,5lk2,6

(b)
({lk1,1}, {gk1,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk1,3, lk1,3, lk1,2, s1}),
({lk1,1}, {gk2,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk2,3, lk1,3, lk1,2, s1}),
({gk1,2}, {ck1,2, ck1,1, s1}), ({gk2,2}, {ck1,2, ck1,1, s1}),
({gk1,3}, {ck1,3, ck1,2, s1}), ({gk2,3}, {ck1,3, ck1,2, s1})

(c)
({lk1,1}, {gk1,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk1,3, lk1,3, lk1,2, s1}),
({lk1,1}, {gk2,2, lk1,2, lk1,1, s1}), ({lk1,2}, {gk2,3, lk1,3, lk1,2, s1}),
({gk1,2}, {s1}), ({gk2,2}, {s1})

(d)
s1

gk1,2gk2,2gk1,3gk2,3

lk1,1lk1,2lk1,3

(e)

s1

gk1,2gk2,2

(f)

Figure 1: (a) shows the actions of a transition system δ rep-
resenting the hotel key protocol with 2 rooms, 2 guests and
3 keys per room; room 1 is associated with keys 1–3; room
2 with keys 4–6. (b) is the dependency graph for that sys-
tem. (c) is the projection of the system on an abstraction that
models only the changes related to room 1. (d) is the snap-
shot of δ�ROOM1 on CK1,2, an abstraction that only analyses
the changes related to room 1 when its door recognises key
2 as the current key. (e) and (f) are the dependency graphs of
snapshots that we use for illustrative purposes in the exam-
ples.



Exploiting Acyclicity in Dependency
Previous authors exploit acyclicity in the dependency graph,
a structure that is abundant in practice, for compositional
bounding (Baumgartner, Kuehlmann, and Abraham 2002;
Baumgartner and Kuehlmann 2004; Rintanen and Gretton
2013; Abdulaziz, Gretton, and Norrish 2015). We review the
approach from (Abdulaziz, Gretton, and Norrish 2015), that
performs compositional bounding of the sublist diameter.

Definition 9 (Sublist Diameter). Recall that a list
→
π
′

is a
sublist of

→
π , written

→
π
′
�· →π , iff all the members of

→
π
′

occur in the same order in
→
π . The sublist diameter, `(δ), is

the length of the longest shortest equivalent sublist to any
execution

→
π ∈ δ∗ starting at any state x ∈ U(δ). Formally,

`(δ) = max
x∈U(δ),

→
π∈δ∗

min
→
π (x)=

→
π
′
(x),
→
π
′
�·→π
|→π
′
|.

Note, ` is an upper bound in the sense d(δ) ≤ `(δ).
Compositional techniques compute upper bounds by

composing together bounds for abstract subproblems. To
make these ideas concrete, consider the compositional func-
tion Nsum〈b〉(δ,GVS), defined via a recurrence below. The
functional parameter b is used to bound abstract subprob-
lems, GVS is a lifted dependency graph of δ used to iden-
tify abstract subproblems, δ is the system of interest, and
childrenGVS(vs) ≡ {vs2 | vs2 ∈ GVS ∧ vs→vs2}.
Definition 10 (Acyclic Dependency Compositional Bound).

N〈b〉(vs, δ,GVS) = b(δ�vs)(1+
∑

c∈childrenGVS (vs)

N〈b〉(c, δ,GVS))

Then, let Nsum〈b〉(δ,GVS) =
∑

vs∈GVS N〈b〉(vs, δ,GVS).
Example 4. For GVS from Example 3, we have
Nsum〈b〉(δ,GVS) = b(δ�ROOM1) + b(δ�ROOM2).

Theorem 1. For an acyclic lifted dependency graph GVS, if
b bounds `, then `(δ) ≤ Nsum〈b〉(δ,GVS).

The previous theorem suggests appropriate choices of
b. Taking b = ` is admissible, while taking b to be the
diameter is problematic, as systems exist where d(δ) >
Nsum〈d〉(δ,GVS) (see (Abdulaziz, Gretton, and Norrish
2015) for more details). However, in practice one need not
evaluate NP-hard functions, such as `, or the length of the
longest path (a.k.a. recurrence diameter). Instead b can be
an easier to compute function that is an upper bound on `,
like the state space cardinality – i.e. we could take b(δ) =
2|D(δ)|, or leverage a more refined cardinality approach as
in Rintanen and Gretton (2013).

Exploiting State-Space Acyclicity
The practical utility of dependency graph based decomposi-
tions (like Nsum) provides a good motivation to pursue other
structures, like state space acyclicity. In the next example we
show that state space acyclicity is independent of acyclic-
ity in variable dependency. Thus, methods previously devel-
oped cannot be used to exploit the former in compositional
upper-bounding.

Example 5. δ�ck1
is acyclic. For example, no state satisfy-

ing CK1,2 can be reached from a state satisfying CK1,3. Now
consider δ�ROOM1 from Example 1. The dependency graph of
δ�ROOM1 is comprised of one strongly connected component
(SCC). Thus, acyclicity in the assignments of ck1 cannot be
exploited in δ�ROOM1 by analysing its dependency graph.
To exploit state space acyclicity we formalise it as follows.
Definition 11 (Acyclic Transition System). δ is acyclic iff
∀x, x′ ∈ U(δ). x 6= x′ then x 6 x′ or x′ 6 x.

We now investigate how such acyclicity can be used for
bounding. Let b be an arbitrary bounding function that sat-
isfies d(δ) ≤ b(δ) for any δ. Consider a system δ where for
some variables vs we have that δ�vs is acyclic – i.e. the state
space of δ�vs forms a directed acyclic graph (DAG). In that
case, we have that d(δ) ≤ Smax〈b〉(vs, δ), where Smax is a
compositional bounding function defined as follows.
Definition 12 (Acyclic System Compositional Bound). Let-
ting succ(x, δ) ≡ {x′ | ∃π ∈ δ.π(x) = x′}, S is

S〈b〉(x, vs, δ) = b(δ|•x)+ max
x′∈succ(x,δ�vs)

(S〈b〉(x′, vs, δ)+1)

Then, let Smax〈b〉(vs, δ) = max
x∈U(δ�vs)

S〈b〉(x, vs, δ).

Theorem 2. If δ�vs is acyclic and b bounds d, then d(δ) ≤
Smax〈b〉(vs, δ).
A formal proof is provided in the next section. S is only
well-defined if δ�vs is acyclic. We only seek to consider and
interpret Smax in systems δ�vs where no execution can visit
a state more than once. In that situation Smax calculates the
maximal cost of a traversal through the DAG formed by the
state space of δ�vs . Completing that intuition, take the cost
of visiting a state x to be b(δ|•x), and the cost of traversing an
edge between states to be 1. These ideas are made concrete
below, in Example 6. Also, since Smax follows the scheme
of an algorithm that finds the length of the longest path in a
DAG, the runtime of a straightforward implementation of it
is linear in the size of the state space of δ�vs and the com-
plexity of computing b.
Example 6. Since δ�ck1

is acyclic, and CK1,i ∈ U(δ�ck1
),

then S〈d〉(CK1,i,ck1, δ) is well-defined for i ∈ {1, 2, 3}.
Denoting d(δ|•CK1,i

) with d1,i and S〈d〉(CK1,i,ck1, δ) with
S1,i, we have S1,3 = d1,3 because succ(CK1,3, δ�ck1

) = ∅.
We also have S1,2 = d1,2 + 1 + S1,3 = d1,2 + 1 + d1,3 and
S1,1 = d1,1 + 1 + S1,2 = d1,1 + 1 + d1,2 + 1 + d1,3 =
d1,1 + d1,2 + d1,3 + 2.

In closing, it is worth noting that for the above example,
the dependency graph of δ�ROOM1 is comprised of one SCC.
Therefore there is no lifted dependency graph providing fur-
ther decomposition. Indeed, exploiting acyclicity in depen-
dency between variables alone, one cannot further decom-
pose the subproblem δ�ROOM1. We were able to achieve a
more fine grained decomposition of that component above,
by exploiting state space acyclicity.

Proof of Theorem 2
A concise statement of our proof requires additional nota-

tions. We use the arrow superscript,
→
l , to indicate that the



variable l is a seuquence. We write [] for the empty sequence,

and h ::
→
l to indicate a sequence with head element h and

tail
→
l . Given two sequences,

→
l1 and

→
l2 ,
→
l1_

→
l2 denotes their

concatenation.
Proposition 1. For any δ, vs , and x, if δ�vs is acyclic,
x ∈ U(δ�vs), and x′ ∈ succ(x, δ�vs), then b(δ|•x) + 1 +
S〈b〉(x′, vs, δ) ≤ S〈b〉(x, vs, δ), for a base-case function b.
Definition 13 (Subsystem Trace). For a state x, action se-
quence

→
π , and set of variables vs , let ∂(x,

→
π , vs) be:

∂(x, [], vs) = []

∂(x, π ::
→
π , vs) =

{
x′ :: ∂(x′,

→
π , vs) if x�vs 6= x′�vs

∂(x′,
→
π , vs) otherwise

where x′ = π(x).

Proposition 2. For any x,
→
π , and vs , if ∂(x,

→
π , vs) =

[] then: (i) x�vs =
→
π (x)�vs and (ii) there is

→
π
′

where
→
π (x) =

→
π
′
(x) and |→π

′
| ≤ d(δ|•x�vs ).

Proposition 3. For any x, x′,
→
x , vs , and

→
π , if ∂(x,

→
π , vs) =

x′ ::
→
x , then there are

→
π 1, π, and

→
π 2 such that

(i)
→
π =

→
π 1_π ::

→
π 2, (ii) ∂(x,

→
π 1, vs) = [],

(iii) π(
→
π 1(x)) = x′, and (iv)

→
π 2(x′) =

→
π (x).

Proposition 4. For any x,
→
π 1,

→
π 2, and vs , we have that

∂(x,
→
π 1_

→
π 2, vs) = ∂(x,

→
π 1, vs)_∂(

→
π 1(x),

→
π 2, vs).

Lemma 1. For any δ and vs where δ�vs is acyclic, x ∈
U(δ), and

→
π ∈ δ∗, there is

→
π
′

such that
→
π (x) =

→
π
′
(x) and

|→π
′
| ≤ S〈d〉(x�vs , vs, δ).2

Proof. The proof is by induction on ∂(x,
→
π ). The base case,

∂(x,
→
π ) = [], is trivial. In the step case we have that

∂(x,
→
π ) = x′ ::

→
x and the induction hypothesis: for any

x∗ ∈ U(δ), and
→
π
∗
∈ δ∗ if ∂(x∗,

→
π
∗
) =

→
x then there is

→
π ∗′

where
→
π
∗
(x∗) =

→
π ∗′(x∗) and |→π ∗′| ≤ S〈d〉(x∗�vs).

Since ∂(x,
→
π ) = x′ ::

→
x , we have

→
π 1, π and

→
π 2 sat-

isfying the conclusions of Proposition 3. Based on conclu-
sion i, ii, and iii of Proposition 3 and Proposition 4 we have
∂(x′,

→
π 2) =

→
x . Accordingly, letting x∗, and

→
π
∗

from the
inductive hypothesis be x′, and

→
π 2, respectively, there is

→
π
′
2

such that
→
π 2(x′) =

→
π
′
2(x) and |→π

′
2| ≤ S〈d〉(x′�vs).†

From conclusion ii of Proposition 3 and conclusion ii of
Proposition 2 there is

→
π
′
1 where

→
π 1(x) =

→
π
′
1(x) and |→π

′
1| ≤

d(δ|•x�vs ). Letting
→
π
′
≡ →π

′
1#π ::

→
π
′
2, from conclusions iii

and iv of Proposition 3 and † we have
→
π (x) =

→
π
′
(x) and

|→π
′
| ≤ d(δ|•x�vs ) + 1 + S〈d〉(x′�vs).‡

Lastly, from conclusion i of Proposition 2 and conclusion
ii of Proposition 3 we have x�vs =

→
π 1(x)�vs =

→
π
′
1(x)�vs

2In the proof, the parameters vs and δ, which are common to
every occurrence of functions ∂ and S, are omitted, – e.g. we use
the shorthand S〈d〉(x�vs) for S〈d〉(x�vs , vs, δ).

and accordingly π�vs(x�vs) = x′�vs . Based on that we have
x′�vs ∈ succ(x�vs , δ�vs). Then from Proposition 1 and ‡
we have |→π

′
| ≤ S〈d〉(x�vs).

Theorem 2 follows from Lemma 1 and Definitions 4 and 12.

Algorithms for Upper Bounds
Theorem 2 suggests the possibility of compositional upper-
bounding of the diameter given the presence of acyclicity in
a transition system’s state space. We now investigate prac-
tical compositional algorithms based on Theorem 2. One
straightforward algorithm is the algorithm PUR.

Algorithm 1: PUR(δ)

S = min({Smax〈PUR〉(vs, δ) | vs ∈ Ω(δ)} ∪∞)
if S =∞ return EXP(δ) else return S

Theorem 3. If EXP bounds d, then d(δ) ≤ PUR(δ)

In PUR, Ω is an oracle that returns a set of strict subsets of
D(δ), where ∀vs ∈ Ω(δ).δ�vs is acyclic. Since Ω returns
strict subsets, the snapshot has fewer variables than the con-
crete system and accordingly PUR terminates. In PUR the
function EXP provides upper bounds for the diameters of
“base-case” problems – i.e. problems that are not further de-
composed. Given this assumption and Theorem 2, PUR itself
computes valid upper bounds for the diameter of the whole
problem.

A main question for a practical implementation of PUR
is the choice of Ω. The trivial choice of all strict subsets of
D(δ) is impractical. A pragmatic solution which we have
adopted, is to take the situation that elements in D(δ) model
individual assignments in the SAS+ model generated using
Fast-Downward’s preprocessing step (Helmert 2006). Each
element in Ω(δ) then corresponds to a set of elements from
D(δ) that model one multi-valued state variable whose do-
main transition graph is acyclic.

A source of intractability in PUR comes from the min op-
erator. For a full evaluation, Smax is recursively called as
many as |Ω(δ)|! times. In practice we only evaluate Smax on
one arbitrarily chosen element from Ω(δ). Our experimen-
tation never uncovered a problem where a full evaluation of
the min, where computationally feasible, produced a better
bound. A second source of computational expense comes
from the definition of Smax: PUR can be recursively called a
number of times that is linear in the size of the state space of
δ. This happens if Ω(δ) is a partition of D(δ). Although this
worst case scenario is contrived in practice Ω(δ) can cover
sufficient elements from D(δ) to render PUR impractical.
This is demonstrated in the following example.
Example 7. Taking D(δ) associated with the hotel key pro-
tocol example, the Fast-Downward preprocessor (Helmert
2006) identifies partition:

ck1,ck2,lk1,lk2,
{gk1,2}, {gk1,3}, {gk1,5}, {gk1,6},
{gk2,2}, {gk2,3}, {gk2,5}, {gk2,6},
{s1}, {s2}





as SAS+ variable assignments. Let Ω(δ) denote that set, ex-
cluding {s1} and {s2}. Note, ∀vs ∈ Ω(δ) we have that δ�vs
is acyclic. Consequently, we have that PUR(δ) evaluates af-

terΠvs∈Ω(δ)|vs|,i.e. 34 = 81, calls to Smax.

Hybrid Algorithm
We have just observed a situation where PUR can exhibit
a runtime that is linear in the size of the state space. That
is favourable compared to exact calculations of diameter,
which in our opening remarks we noted to have worse-than-
quadratic runtime. Nevertheless this is unacceptable in our
factored setting, and we now seek to alleviate this computa-
tional burden by applying Smax to abstract sub-systems ob-
tained using projections that motivated Definition 10. Such
abstractions can be significantly smaller than the concrete
systems, thus motivating a hybrid approach that can expo-
nentially reduce bound computation times.

Example 8. Consider applying the approach outlined
in Example 3 to compute PUR only on the abstrac-
tions δ�ROOM1 and δ�ROOM2. PUR(δ�ROOM1) can be
evaluated in Πvs∈Ω(δ�ROOM1)

|vs| calls to Smax, where
Ω(δ�ROOM1)={ck1,lk1, {gk1,2}, {gk1,3}, {gk2,2},
{gk2,3}}. The same observation can be made for the evalu-
ation time of PUR(δ�ROOM2). Thus the product expression in
Example 7 is split into a sum if PUR is called on projections.

We now give an upper-bounding algorithm, HYB, that
combines exploitation of acyclic variable dependency with
exploitation of acyclicity in state spaces.

Algorithm 2: HYB(δ)

Compute the dependency graph GD(δ) of δ and its SCCs
Compute the lifted dependency graph GVS
if 2 ≤ |GVS.V | return Nsum〈HYB〉(δ,GVS)
else if Ω(δ) 6= ∅ return Smax〈HYB〉(ch(Ω(δ)), δ)
else return EXP(δ)

In HYB, ch is an arbitrary choice function. The termination
of HYB follows from two facts. Firstly, Nsum is only called
if the lifted dependency graph is not trivial, i.e. 2 ≤ |GVS.V |.
Accordingly Nsum will call HYB on projections with strictly
smaller domains than the concrete system. Secondly, since Ω
returns strict subsets of D(δ), Smax only calls HYB on snap-
shots with strictly smaller domains than the concrete system.

Note that in HYB, Smax is only applied to the given transi-
tion system δ if there is no non-trivial projection (i.e.if GD(δ)

has one SCC), and EXP is applied only to base-cases. Also
note that GD(δ) is constructed and analysed with every re-
cursive call to HYB, as snapshotting in earlier calls can re-
move variable dependencies as a result of removing actions,
leading to the breaking of the SCCs in GD(δ), as shown in
Example 9.

Example 9. As shown in Figure 1b, the dependency graph
of δ�ROOM1 has a single SCC, and thus not susceptible to
dependency analysis. Taking a snapshot of δ�ROOM1 at the

assignment CK1,2 yields a system with one SCC in its de-
pendency graph as well, as shown in Figure 1e. How-
ever, taking the snapshot of δ�ROOM1|•CK1,2

at the assignment
{lk1,1,lk1,2,lk1,3}, denoted by LK1,2, yields a system
with an acyclic dependency graph as shown in Figure 1f.

We prove HYB is sound by proving it is sound for as tight
a base function as possible. Then soundness for using EXP
as a base function follows. As discussed above, d cannot
be used, because Nsum〈d〉 is not a valid upper bound on d.
However, using the sublist diameter ` as a base-case function
is sound. To prove that, we derive the following.
Theorem 4. If δ�vs is acyclic and b bounds `, then `(δ) ≤
Smax〈b〉(vs, δ).

This theorem follows from an argument analogous to that
provided for Theorem 2, taking ` to be d. Using this the-
orem, and Theorem 1 in (Abdulaziz, Gretton, and Norrish
2015) the validity of HYB as an upper bound on ` (and ac-
cordingly, the diameter) follows.
Proposition 5. If EXP bounds `, then `(δ) ≤ HYB(δ).

Figure 2: Scatter plot of the bound (horizontal axis) com-
puted by HYB, and the size (i.e. |D(δ)|) of the concrete prob-
lem (vertical).

Empirical Evaluations
We first discuss the practicalities of implementing HYB. Fol-
lowing (Rintanen and Gretton 2013), we take a base-case
function, EXP, which gives the cardinality of the state space.
This choice is pragmatic, taken in light of the fact that com-
putation of alternatives such as recurrence and sublist diam-
eters, is NP-hard. To optimise computing Nsum and Smax,
we use memoisation, where we compute N or S once for
every projection or snapshot, respectively, and store it in a
look-up table. This reduced the bound computation time by



Figure 3: Scatter plot of the size of the largest base-case (hor-
izontal), and the size of the concrete problem (vertical). Leg-
end is provided in Figure 2.

Figure 4: Scatter plot of the bounds computed by HYB
(horizontal axis) and the state-of-the-art bounding algorithm
Nsum (vertical). Legend is provided in Figure 2.

70% on average. Our evaluation considers problems from
previous International Planning Competitions (IPC), and the
unsolvablity IPC, and open Qualitative Preference Rovers
benchmarks from IPC2006. Below, the latter are referred to
as NEWOPEN.

Figure 5: Scatter plot of the size (i.e. |D(δ)|) of the largest
base-case using HYB (horizontal axis) and Nsum (vertical).
Legend is provided in Figure 2.

Quality of HYB Bounds
Two measurements related to a compositional upper-
bounding algorithm are indicative of its quality. First, we
seek an indication of the degree of decompositionality pro-
vided by the algorithm. An indication is provided by com-
paring the size of the domain of the concrete problem—
i.e. |D(δ)|—with that of the largest base-case. A strong de-
composition is indicated when the domain of the base-case
is small relative to the concrete problem. Second, we seek
an approach that is able to produce bounds that grow sub-
exponentiallly with the size of the problem, when they exist.
Thus, we measure how the upper bounds scale in domains
as the size of the problem instances grow. If the bounds
scale gracefully, this indicates an effective compositional ap-
proach.

We report our measurements of the performance of HYB
in these terms. Our experiments were conducted on a uni-
form cluster with time and memory limits of 30minutes
and 4GB, respectively. Figure 3 shows the domain size of
the largest base-case compared to the size of the concrete
problem. IPC domains with instances remarkably suscepti-
ble to decomposition by HYB are: ROVERS (both solvable
and unsolvable), STORAGE, TPP (both solvable and unsolv-
able), LOGISTICS, NEWOPEN, NOMYSTERY (both solvable
and over-subscribed), UNSOLVABLE MYSTERY, VISITALL,
SATELLITES, ZENO TRAVEL, and ELEVATORS. For those
problems, the size of the largest base-case is significantly
smaller than the size of the concrete problem, as shown in
Figure 3. One IPC domain that is particularly amenable to
decomposition is the ROVERS domain, where many of its
instances are decomposed to have largest base-cases mod-
elling a single Boolean state-variable. Also, for domains sus-



Figure 6: Scatter plot of computation time (in seconds) of
HYB (horizontal axis) and Nsum (vertical) for benchmarks.
Legend is provided in Figure 2.

ceptible to decomposition, the bounds computed by HYB
grow sub-exponentially with the number of state variables,
as shown in Figure 2. We also note that out of those domains,
LOGISTICS, NOMYSTERY, SATELLITES, ZENO TRAVEL and
ELEVATORS, have linear (or almost linear) growth of the
bounds with the size of the problem.

We also ran HYB on a PDDL (McDermott et al. 1998) en-
coding of the hotel key protocol, with the parameters G, k,
and R ranging between 1 and 10 (i.e. 1000 instances of the
protocol). As shown in Figure 3 (and in the examples ear-
lier), this protocol is particularly amenable to decomposition
by HYB. All instances had a largest base-case modelling a
single Boolean state-variable. Additionally, the bounds com-
puted by HYB for this set of benchmarks are constant in the
number of guests G, grow linearly in the number of rooms
R, and quadratically in the number of keys per room K.

Comparison of HYB and Nsum

We compared the performance of the hybrid compositional
bounding algorithm HYB with the state-of-the-art algorithm
we refer to as Nsum. The latter was shown in (Abdulaziz,
Gretton, and Norrish 2015) to dominate other compositional
bounding algorithms. Our experimental cluster and settings
are as above. Our analysis and experimentation shows that
HYB significantly outperforms Nsum, both in terms of de-
composition quality and the tightness of computed bounds.
This is particularly the case for the domains: NEWOPEN,
NOMYSTERY, ROVERS, HYP, TPP, VISITALL, and BOTTLE-
NECK. The success of HYB in our experimentation reveals
something of an abundance of problems with acyclicity in
their state space. Figure 5 indicates that HYB is more suc-
cessful in decomposing problems compared to Nsum, where

the largest base-cases for HYB are smaller than those for
Nsum in 71% of the IPC problems. This observation is rein-
forced, considering that the 1000th largest bound computed
by HYB is 50, 534, while the 1000th largest bound computed
by Nsum is more than 106. In the HOTELKEY domain, the
difference is even more pronounced. The bound computed
by HYB is at most 990 for all the 1000 instances, while for
Nsum only 285 instances have bounds less than 106.

Figure 4 shows the computational cost of this improved
bounding performance. HYB typically required more com-
putation time than Nsum. However, HYB terminated in 60
seconds, or less, for 93% of the benchmarks. Thus, we have
not observed a significant time penalty. We note that the im-
proved decompositionality over Nsum exhibited here has fur-
ther application yet to be explored. Should we take EXP to
be a more expensive operator, such as the NP-hard recur-
rence or sublist diameters, the stronger decomposition indi-
cates that EXP is invoked for relatively small instances when
using HYB compared to Nsum. Thus, computing EXP can be
exponentially easier for decompositions computed by HYB
compared to decompositions from Nsum.

Planning with HYB

To evaluate the practical utility of the bounds calculated us-
ing HYB, we take them as the queried horizon using the
MP version of the SAT-based planner Madagascar (Rintanen
2012). In our experiments we limited the time and mem-
ory for planners to 1 hour (inclusive of bound computa-
tion) and 4GB. The resulting planner proves the safety of
635 instances of the hotel key protocol, where the instance
with 9 rooms, 7 guests, and 45 keys, takes the longest to
prove safe – it took just under 30 minutes. This is a substan-
tial improvement over the size of instances automatically
proven safe in earlier work. We also ran AIDOS 1 (Seipp
et al. 2014) (unsolvability IPC winner) on the hotel key in-
stances and it proved the safety of only 285 of them, where
the instance with 2 rooms, 5 guests, and 10 keys, took the
longest to prove safe – in 17 minutes. For the IPC bench-
marks, our planner proved that 53 instances are unsolvable,
27 of which could not be proven unsolvable by AIDOS 1.
The 27 instances are from BOTTLENECK (7 problems), 3UN-
SAT (4 problems), ELEVATORS (5 problems), and NEWOPEN
(11 problems). We also note that compared to the system
from (Rintanen and Gretton 2013), we are additionally able
to close the heretofore open 7th and 8th Qualitative Pref-
erence problem from IPC2006. We also found our bounds
useful in solving satisfiable benchmarks. It allowed MP to
solve 162 instances that it could not with its default query
strategy. Those instances are from ELEVATORS (150 prob-
lems), DIAGNOSIS (8 problems), ROVERS (1 problem) and
SLIDING-TILES (3 problems).

Conclusions and Future Work
The practical incompleteness of SAT based planning and
model-checking algorithms—due to the absence of upper-
bounding methods—has for some years been noted as a
significant problem (Clarke et al. 2004). It is perceived as
a deficiency of SAT methods in making comparisons with



state based methods. We have addressed that deficiency by
advancing the compositional approach to computing upper
bounds. Our advance is to exploit state space acyclicity, giv-
ing significantly finer grained decompositions compared to
previous works. The resulting algorithm is able to achieve
exponentially tighter bounds relative to comparable recent
studies. That benefit comes with the risk of an exponential
explosion in the number of subproblems considered by the
algorithm. The runtime measurements we made experimen-
tally suggest that this theoretical risk is not realised in prac-
tice. Bounds computed using our approach enabled a SAT
based planning system to prove the unsatisfiability of plan-
ning benchmarks (most notably the hotel key protocol) that
severely challenge state-of-the-art state-search based tools.

Future research should investigate bounding using func-
tions that are tighter than the diameter. One such bound is
the radius, which is the longest shortest path from the ini-
tial state to any other state. We conjecture that our analy-
sis shall carry over to that setting. Further study should also
develop compositional bounds using a more sophisticated
base-case function. Base-case functions, such as recurrence
and sublist diameters could yield superior bounds compared
to those we report, however are NP-hard to evaluate. Be-
cause the size of abstractions evaluated in the base-case us-
ing our method are relatively small compared to other com-
positional approaches, one can expect exponentially faster
bounding using such sophisticated base-case functions.
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