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Abstract

We present an executable formally verified SAT encoding of
ground classical AI planning problems. We use the theorem
prover Isabelle/HOL to perform the verification. We exper-
imentally test the verified encoding and show that it can be
used for reasonably sized standard planning benchmarks. We
also use it as a reference to test a state-of-the-art SAT-based
planner, showing that it sometimes falsely claims that prob-
lems have no solutions of certain lengths.

Introduction
Planning systems are becoming more and more scalable and
efficient, as shown by different planning competitions (Long
et al. 2000; Coles et al. 2012; Vallati et al. 2015), making
them suited for realistic applications. Since many applica-
tions of planning are safety-critical, increasing the trustwor-
thiness of planning algorithms and systems is instrumental
to their widespread adoption. Consequently there currently
are substantial efforts to improve the trustworthiness of plan-
ning systems (Howey, Long, and Fox 2004; Eriksson, Röger,
and Helmert 2017; Abdulaziz, Norrish, and Gretton 2018;
Abdulaziz and Lammich 2018).

Increasing trustworthiness of software is a well-studied
problem. Three approaches have been tried in the litera-
ture (Abdulaziz, Mehlhorn, and Nipkow 2019). Firstly, a
system’s trustworthiness can be increased by applying soft-
ware engineering techniques, e.g. programming at the right
level of abstraction, code reviewing, and testing. Although
these practices are relatively easy to implement, they are in-
complete.

Secondly, there is certified computation, where the given
program computes, along with its output, a certificate show-
ing why this output is correct. This relegates the burden of
trustworthiness to the certificate checker, which should be
much simpler than the system whose output is to be certi-
fied, and thus is less error prone. Certified computation was
pioneered by Mehlhorn and Näher 1998 who used it for their
LEDA library. In the realm of planning, this approach was
pioneered by Howey, Long, and Fox who developed the plan
validator VAL (Howey, Long, and Fox 2004). Also, certify-
ing unsolvability for planning was pioneered by Eriksson,
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Röger, and Helmert 2017. A fundamental problem with cer-
tified computation for classical planning, as well as other
PSPACE-complete problems, is that no succinct certificates
exist unless NP = PSPACE (Arora and Barak 2009, Chap-
ter 4).

Thirdly, there is formal verification, where system prop-
erties are verified by means of a mechanically checkable
formal mathematical proof. This gives the highest possi-
ble trust in a program. Unlike certified computation, for-
mal verification guarantees program completeness, in addi-
tion to its output correctness. Nonetheless, formal verifica-
tion needs intensive effort, and it is usually much harder for
a formally verified program to perform as efficiently as an
unverified program since verifying all performance optimi-
sations is usually infeasible. Nonetheless, formal verifica-
tion has seen recent wide-spread success. Notable applica-
tions include a verified OS kernel (Klein et al. 2009), a ver-
ified SAT-solver (Blanchette et al. 2018), a verified model
checker (Esparza et al. 2013), a verified conference sys-
tem (Kanav, Lammich, and Popescu 2014), a verified opti-
mised C compiler (Leroy 2009), and, in the context of plan-
ning, verified validators (Abdulaziz and Lammich 2018; Ab-
dulaziz and Koller 2022), and algorithms for bounding plan
lengths (Abdulaziz, Norrish, and Gretton 2018).

Encoding planning problems as logical formulae has a
long history (McCarthy and Hayes 1981). SAT-based plan-
ning (Kautz and Selman 1992) is the most successful such
approach, where the question of whether a planning problem
has a solution of bounded length is encoded into proposi-
tional (SAT) formulae. For a sound and complete encoding,
a formula for a length bound (aka horizon) h is satisfiable iff
there is a solution with length bounded by h. A series of such
formulae for increasing horizons are passed to a SAT solver
until a plan is found. The encoding of Kautz and Selman
was significantly improved by exploiting problem symme-
tries (Rintanen 2003), state invariants, and by parallelising
the encodings (Rintanen, Heljanko, and Niemelä 2006). In
this paper we present a formally verified ∀-step parallel en-
coding of classical planning (Kautz and Selman 1996; Rin-
tanen, Heljanko, and Niemelä 2006). Using it as a reference,
we discover bugs in the state-of-the-art SAT-based planner
Madagascar (Rintanen 2012). We also show that our encoder
is an order of magnitude slower than Madagascar, which is
reasonable for formally verified software.



Motivation Before we delve into details, we find it sensi-
ble to answer the question of why to verify a SAT encod-
ing of planning? The first motivation is to demonstrate the
process of formally verifying a state-of-the-art planning al-
gorithm. Secondly, a verified planner can be used as a refer-
ence implementation, against which unverified planners can
be tested. Thirdly, SAT encodings of planning are particu-
larly suited for formal verification since the process of en-
coding the problem into a SAT formula is not the compu-
tational bottleneck. This means that not much effort needs
to be put into verifying different implementation optimisa-
tions. Also, importantly, verified SAT solving technology is
continuously advancing, which means that the performance
of verified planning using the verified encoding will contin-
uously improve. E.g. the verified SAT solver by Blanchette
et al. is one to two orders of magnitude slower than Min-
isat (Eén and Sörensson 2003), and the verified unsatisfi-
ability certificate checker GRAT (Lammich 2017) is faster
than DRAT-trim (Wetzler, Heule, and Jr 2014). Lastly, the
problem of increasing trustworthiness of ‘traditional’ SAT-
based planning was most recently raised by Eriksson and
Helmert (2020). They stated, as an open problem, certify-
ing that an unsatisfiable SAT formula encoding a planning
problem indeed shows a lower bound on the solution length.
We address this open problem and show it is solvable with
formal verification.

Approach Overview Our approach has two focuses,
which we try to highlight in this paper. The first is minimis-
ing trusted code. To reduce the trusted code base we make
sure the encoder and the decoder take (produce) as input
(output) abstract syntax trees (AST) of the formats used in
the input (output) files. This way we only trust parsing and
pretty printing components. The encoder takes an AST of
Fast-Downward’s translator format (Helmert 2006) as input
(hereafter, FD-AST) and produces an AST of the standard
DIMACS-CNF format. This DIMACS-CNF is passed to an
unverified SAT solver. If the SAT solver finds a model for
the encoded formula, our verified decoder takes the AST of
the DIMACS model and the FD-AST and produces a plan
only if the model entails the CNF encoding of the FD-AST.
If the SAT solver finds the formula unsatisfiable, we take
the unsatisfiability certificate and pass it, together with the
DIMACS-CNF encoding, to the formally verified unsatisfi-
ability certificate checker of Lammich 2017. Accordingly,
all outputs of our system have formal guarantees, whether
the output is a plan or a conclusion that none exists.

The second is engineering tradeoffs for feasible verifica-
tion. Formally verifying a reasonably big piece of software
is a daunting task. E.g. it has been reported that the size of
the proof scripts for verifying the OS kernel seL4 is quadrat-
ically as big as the C implementation of the kernel (Klein
et al. 2009). Thus, a major verification effort like verifying
a SAT-based planner needs careful engineering and modu-
larisation. For complicated algorithms, the most successful
approach is stepwise refinement, where one starts with an
abstract version of the algorithm and verifies it. Then one
devises more optimised versions of the algorithm, and only
proves the optimisations correct. This approach was used in

1
begin_variable
var1
-1
2
Atom at-robby(r0)
Atom at-robby(r1)
end_variable

begin_state
0
end_state
begin_goal
1
0 1
end_goal

1
begin_operator
move r0 r1
0
1
0 0 0 1
0
end_operator

p cnf 6 15
3 0
-5 0
-4 0
...
5 -6 1 0
-3 4 1 0
-5 6 0
-1 1 0

Figure 1: The first three listings are the concrete syntax of
a planning problem in Fast Downward’s translator format.
The fourth listing is a CNF-DIMACS formula.

most successful algorithm verification efforts (Klein et al.
2009; Blanchette et al. 2018; Esparza et al. 2013; Kanav,
Lammich, and Popescu 2014).

For compilers, a different approach is used: one splits
the compiler into smaller translation steps, and verifies each
one of those steps separately. In the end, the composition of
those verified transformations is the verified compiler. This
approach was used in all notable verified compilers (Leroy
2009; Kumar et al. 2014). We follow this methodology.

Isabelle/HOL We perform the verification using the inter-
active theorem prover Isabelle/HOL (Nipkow, Paulson, and
Wenzel 2002), which is a theorem prover for Higher-Order
Logic. Roughly speaking, Higher-Order Logic can be seen
as a combination of functional programming with logic. Is-
abelle is designed for trustworthiness: following the Logic
for Computable Functions approach (LCF) (Milner 1972),
a small kernel implements the inference rules of the logic.
Around the kernel there is a large set of tools that imple-
ment proof tactics and high-level concepts like algebraic
datatypes and recursive functions. Bugs in these tools can-
not lead to inconsistent theorems being proved, but only to
error messages when the kernel refuses a proof.

Availability All theorems in this paper were formally
proved in Isabelle/HOL. The full formal proofs can
be found at https://www.isa-afp.org/entries/Verified SAT
Based AI Planning.html and the verified planner based on
these proofs can be found at https://github.com/mabdula/
Verified-SAT-Based-Planning.

Background
In this paper, lists (sets) of objects are written between
square brackets (curly braces). E.g. [a, b, c] ({a, b, c}) de-
notes the list (set) of objects a, b and c. We also make use
of the choice function ch, which, for a non-empty set s, de-
notes an arbitrary element of s. If s = {}, ch is undefined.
A mapping f : V → A is a set of maplets, s.t., for every
v 7→ a ∈ f , v ∈ V and a ∈ A, and, if v 7→ a1 ∈ f and
v 7→ a2 ∈ f , then a1 = a2. For a mapping f , we define
f(v) to be a if v 7→ a ∈ f , otherwise it is undefined. Also,
for a mapping f : V → A, D(f) denotes {v | v 7→ a ∈ f}.
We call f a complete mapping iff D(f) = V . Otherwise, we
call it a partial mapping.

There are multiple formalisms to represent planning and
logical formulae. Some of those formalisms are geared to-
wards being file formats and others are abstract formalisms
that are geared towards performing abstract and pen-and-
paper reasoning. Since the main goal of our development is
to minimise trusted (i.e. unverified) code, we aim at having



our verified program (i) take as input as close a representa-
tion as possible to the actual input format (i.e. Fast-Down-
ward’s translator format1) and (ii) produce as output a for-
mat that is as close to the output file format as possible (i.e.
the DIMACS-CNF format). However, although we want our
verified program to operate on inputs (outputs) that are as
close as possible to the input (output) files, it cannot directly
operate on the input (output) strings. In particular, the input
strings have to be parsed into ASTs, and the program has to
produce an output that is also an AST, which is to be pretty
printed into an output file.
Definition 1 (FD-AST). An FD-AST is a tuple (V, I,G,O),
where V : N → N is the variables section, I : N → N is
the initial state, G : N → N is the goal, and O is the set of
operators. For each v 7→ Dv ∈ V , v stands for a variable
andDv is the number of assignments this variables can take.
An operator is a tuple (name, ps, es), where name is the op-
erator’s name, ps : N × N is a partial mapping called the
prevail preconditions, and es is a set of effects. An effect is a
tuple (epre, v, l,m), where epre : N → N is a partial map-
ping called the effect’s precondition and v, l,m ∈ N. If epre
is non-empty the effect is called conditional.
Note: in parsing, we ignore parts of the format that are irrele-
vant to our encoding, e.g. metric, mutex, and axiom sections.
Definition 2 (Well-Formedness). An FD-AST (V, I,G,O)
is well-formed iff (i) I is a well-formed state w.r.t. the prob-
lem, (ii) G is a well-formed partial state w.r.t. the problem,
(iii) all operators have distinct names, and (iv) every op-
erator is well-formed w.r.t. the problem. A (partial) state s
is well-formed w.r.t. a problem (V, I,G,O) iff it is a (par-
tial) mapping s.t. D(s) ⊆ D(V ), and for any v ∈ D(s),
s(v) < V (v). An operator (name, ps, es) is well-formed iff
(i) ps is a well-formed partial state, (ii) v1 ̸= v2, for every
(epre1, v1, l1,m1), (epre2, v2, l2,m2) ∈ es and (iii) for ev-
ery (epre, v, l,m) ∈ es: (iii)(1) epre is a well-formed partial
state, and (iii)(2) l,m < V (v).
Definition 3 (Execution). An operator (name, ps, es) is ex-
ecutable in a state s iff ps ⊆ s and, for each effect
(epre, v, l,m) ∈ es, v 7→ l ∈ s, if 0 ≤ l. The state resulting
from executing the operator is

(s \ {v 7→ l | ∃(epre, v, l,m) ∈ es ∧ epre ⊆ s})∪
{v 7→ m | ∃(epre, v, l,m) ∈ es ∧ epre ⊆ s},

i.e. it is the same as s, except that it assigns variables ac-
cording to the effects whose preconditions are satisfied.

A solution to a problem P is a list of names
[name1, name2, . . . namen] s.t. there is a mapping sol :
{name1 . . . namen} → O s.t. sol(namei) ∈ O, for
all 1 ≤ i ≤ n, and the sequence of operators
[sol(name1), sol(name2), . . . sol(namen)] are executable in-
order starting at I , and the goal is a subset of the state re-
sulting from executing all operators.
Example 1. Figure 1 shows a planning problem in Fast
Downward’s translator syntax that models a robot that is
in one room and whose goal is to move to another room.
The abstract syntax tree of that problem is ([(v0, 2)], {v0 7→

1http://www.fast-downward.org/TranslatorOutputFormat

0}, {v0 7→ 1}, (move, 0, {}, {([], v0, 0, 1)})). A solution to
this problem is [move].

We limit ourselves to problems without conditional effects
and with only consistent preconditions, defined as follows.

Definition 4 (Valid FD-AST Problem). We call a problem
(V, I,G,O) to be valid iff (i) it is well-formed, (ii) epre = ∅,
for any (name, ps, es) ∈ O and (epre, v, l,m) ∈ es,
i.e. it has no conditional effects, and (iii) for any vari-
able v ∈ D(p1) ∩ D(p2) where p1, p2 ∈ {ps}, where
(name, ps, es) ∈ O, we have p1(v) = p2(v), i.e. all pre-
conditions are consistent.

To formally verify our encoding, we need to formalise the
definitions in Isabelle/HOL’s logic. As input, we use the for-
malisation of FD-AST developed by Abdulaziz and Lam-
mich 2018.

Note that this representation of planning problems, as
well as the final SAT formula, have features which make
it is too cumbersome for abstract pen-and-paper reasoning.
However, we need to start from representations which are
as close as possible to the input/output file to reduce trusted
code. In particular, if we prove our encoding to be correct
on other more abstract representations, we will have to use
trusted (i.e. unverified) pre-processing programs to convert
between the files and the more abstract representation. We
also note that this software is only a simple parser if one
considers the input to be in FD’s translator’s format, which
is our claimed input. The trusted code base is significantly
larger if one considers the input to be a PDDL domain and
instance, as the conversion then includes grounding and the
computation of invariants, etc.

The rest of the paper is structured s.t. there is a section
describing every intermediate representation and translation
step, with the associated correctness theorem.

Translating FD-AST to FDR
Although we can define our encoding directly on FD-AST,
we opted to firstly translate the FD-AST to the Finite Do-
main Representation (FDR), which is another representation
of planning problems with multi-valued state variables. FDR
is more abstract than FD-AST. This facilitates smoother for-
mal reasoning, e.g. it is more suitable for stating algorithms
and theorem statements, while FD-AST is a file format. In
most expositions in planning literature, there is not a dis-
tinction between file formats and the abstract formalisms on
which algorithms and theorems are stated. The actual im-
plementations, however, start from a file format, like Fast
Downward’s translator format, which is simplified to a more
abstract formalism. In our case, nonetheless, we make the
distinction between the two formalisms since our main goal
is a formal correctness guarantee on an implementation of a
planner, including the translation of FD-AST to FDR.

Definition 5 (Finite Domain Representation). An FDR plan-
ning problem Ψ is a tuple (V,R, I, O,G), where V is the set
of state variables, R : V → Av is mapping from variables
to sets of assignments, O is a set of operators, I is the ini-
tial state, and G is the goal. Each variable (operator) has a
unique natural number index, where, for a variable v ∈ V



(operator op ∈ O), its index is 0 ≤ vi < |V | (0 ≤ opi <
|O|). For FDR, a (partial) state s : V →

⋃
{R(v) | v ∈ V }

is a mapping, and D(s) = {v | v 7→ a ∈ s}. A (par-
tial) state s is valid iff for any v 7→ a ∈ s we have that
a ∈ R(v). A valid operator is a pair of valid partial states
op = (p, e), where p is the precondition, denoted by p(op),
and e is the effect, denoted by e(op). We denote the the
execution of a sequence of operators ops at a state s by
ops(s), and it is defined as follows: if ops is not empty
and if for the first operator (p, e) in ops we have p ⊆ s
then ops(s) = ops′(op(s)), where ops′ is the tail (i.e. ev-
ery element but the first) of ops and op(s) is defined to be
{v 7→ a | if v ∈ D(e) then a = e(v) else s(v)}. Other-
wise, ops(s) = s. Ψ is a valid FDR problem iff I is a valid
state, G is a valid partial state, and O is a set of valid op-
erators. A solution for Ψ is an operator sequence ops where
all operator in ops come from O and G ⊆ ops(I).
Note: in contrast to FD-AST plan execution semantics, FDR
execution semantics are defined as a total function, where
plan execution always returns the last state reached before
the first operator whose preconditions are not satisfied. A
total execution function makes many of the formal proofs
easier.

Translating FD-ASTs into FDR problems is done using
the following encoding.
Encoding 1. For an FD-AST problem P = (V, I,G,O),
let FDRV = {v | ∃n. (v, n) ∈ V } and FDRR = {v 7→
{0 . . . n − 1} | (v, n) ∈ V }. For an FD-AST effect e =
(epre, v, l,m), let eold denote v 7→ l and enew denote v 7→
m. For an operator op = (name, ps, es), let FDRO(op) =
(ps ∪ {eold | e ∈ es}, {enew | e ∈ es}). For the FD-AST
problem P , its encoding as an FDR problem, FDR(P ), is
(FDRV ,FDRR, I, {FDRO(op) | op ∈ O}, G).

For the other direction of this encoding, we devise a de-
coding function AST that, given a solution for the FDR
problem FDR(P ), decodes it into a solution for P .
Decoding 1. First, for a set s let ch(s) denote an arbi-
trary element of s if s is not empty, and undefined other-
wise. For an FDR operator op, let AST (op) = ch{name |
FDRO((name, ps, es)) = op}, where O are the operators in
P .
Example 2. The compiled FDR equivalent to the FD-AST
problem P in Example 1, FDR(P ), is(

FDRV = {v0},FDRR = {v0 7→ {0, 1}},
I = {v0 7→ 0},FDRO = {op0},FDRG = {v0 7→ 1}

)
,

where op0 = ({v0 7→ 0}, {v0 7→ 1}).
The following theorem represents the soundness and com-

pleteness of this compilation step.
Theorem 1. Let P be a valid FD-AST problem. We
have that: (i) if [name1, name2, . . . ] is a plan for
P then [FDRO(ch(Oname1), FDRO(Oname2), . . . ] is a
plan for the FDR task FDR(P ), where, for namei,
Onamei = {op | ∃ ps′ es′.op ∈ O ∧ op = (namei, ps′, es′)},
and (ii) if [op1, op2, . . . ] is a plan for the FDR task FDR(P ),
then [AST (op′

1), AST (op′2), . . . ] is a plan for P , where
[op′1, op′2, . . . ] are the operators from the given FDR plan
whose preconditions are satisfied.

Proof sketch. Both statements are proved by induction on
the length of the given plan, while generalising over the ini-
tial state of P , and then careful unfolding of Definitions 1,
2, 3, 4, 5, Encoding 1 and Decoding 1.

Note: since FDR execution function is total, while that of
FD-AST is not, operators whose preconditions are not satis-
fied have to be removed when decoding the FDR plan.

Before we close this section we note a few points re-
garding the formal proof of the above theorem. The proof
of this theorem does not have complicated mathematical
ideas or constructions. However, the main difficulty is cor-
rectly formulating the definitions of well-formed and valid
FD-ASTs, valid FDRs and the encoding and the decoding.
Due to the many conjuncts and components of these defini-
tions, their interactions make formally stating these defini-
tions and proving the theorem a very error-prone and cum-
bersome process. E.g. a detail in the formal proof, which
would be glossed over in a pen-and-paper treatment, is to
show that encoding a well-formed valid FD-AST results in a
valid FDR, which is necessary for using the different the-
orems about FDR problems. Proving that depends on the
assumption that the AST operators have no conditional ef-
fects, a fact which we only understood during our develop-
ment of the formal proof. To overcome these difficulties, we
employed deliberate engineering efforts to make the formal
proof more modular. E.g. we split the encoding of FD-AST
operator to FDR operators into multiple stages. First, the ef-
fect preconditions are removed and added into the operator’s
preconditions, resulting in a simpler FD-AST, with no effect
preconditions. Then, we define a function to encode these
simpler FD-ASTs into FDRs.

Translating FDR to STRIPS
Since a SAT encoding only has propositional variables, we
need to compile the multi-valued state variables of FDR to
propositional values. Instead of performing the compilation
of the multi-valued variables together with the compilation
of the transition relation in one step, we opted to do them
in separate steps, where we first compile FDR problems to
STRIPS problems and then compile STRIPS problems into
SAT formulae. This decision is not of much theoretical im-
portance, but more geared towards making the verification
more modular and thus more manageable.
Definition 6 (STRIPS Problem). An FDR problem Π =
(V,R, I, O,G) is a STRIPS problem iff R(v) = {⊥,⊤}, for
all v ∈ V . When constructing STRIPS mappings, we denote
v 7→ ⊤ with v and v 7→ ⊥ with v.
Encoding 2. Consider an FDR problem Ψ =
(V,R, I, O,G). Our FDR problem compiled to STRIPS is

φ(Ψ) =


φV = {(v, a) | a ∈ R(v) ∧ v ∈ V },

φR = {(v, a) 7→ {⊤,⊥} | (v, a) ∈ φV },
φS(I), φS(G),

φO = {(φS(p), φS(e)) | (p, e) ∈ O}.

 ,

where, for a (partial) state s, φS(s) is defined as
{(v, a) | s(v) = a ∧ v ∈ D(s)}∪
{(v, a) | s(v) ̸= a ∧ v ∈ D(s) ∩ V ∧ a ∈ R(v)}



Example 3. Consider the FDR problem FDR(P ) in exam-
ple 2. For that FDR problem, we have

φV = {(v0, 0), (v0, 1)},
φR = {(v0, 0) 7→ {⊥,⊤}, (v0, 1) 7→ {⊥,⊤}},

φS(I) = {(v0, 0), (v0, 1)}, φS(G) = {(v0, 0), (v0, 1)},
φO = {({(v0, 0), (v0, 1)}, {(v0, 0), (v0, 1)})}


Decoding 2. For an FDR problem Ψ = (V,R, I, O,G) and
an operator (p, e) ∈ φO, let
φ−1
O (p, e) = ({v 7→ a | (v, a) ∈ p}, {v 7→ a | (v, a) ∈ e})

Note: we ignore negative effects when decoding STRIPS op-
erators since they only ensure operator effect consistency.

The soundness and completeness theorems of this encod-
ing of FDR problems follow.

Theorem 2. For a valid FDR problem Ψ (i) if
[op0, . . . , opk] solves the STRIPS problem Π = φ(Ψ), then
ψ = [φ−1

O (op0), . . . , φ
−1
O (opk)] is a solution for Ψ. (ii) if

[op0, . . . , opk] solves Ψ, then π = [φO(op0), . . . , φO(opk)]
solves the STRIPS problem φ(Π).

Proof sketch. (i) We show that G ⊆ ψ(I) and moreover
φ−1
O (op0), . . . , φ

−1
O (opk) ∈ O where G and O are the goal

state respectively operator set of Ψ. The first part of the proof
is by induction over π with arbitrary initial state.
(ii)We show that G ⊆ π(I) and moreover
φO(op0), . . . , φO(opk) ∈ O where G and O are the
goal state respectively operator set of Π. The first part of the
proof is by induction over ψ with arbitrary initial state.

Encoding STRIPS Problems as SAT
In this step we encode the question of whether a STRIPS
problem has a plan of length at most h into a propositional
satisfiability formula. In our formalisation, we use Michaelis
and Nipkow’s formalisation of propositional logic. The spe-
cific encoding we use is similar to the parallel ∀-step en-
coding used by Rintanen, Heljanko, and Niemelä. We limit
operators to ones without conditional effects, require a to-
tal initial state, and constrain preconditions and the goal to
conjunctions of literals. These restrictions are always satis-
fied by problems produced by Encoding 2. Informally, such
a parallel encoding constitutes an unrolling of the transition
relation underlying the STRIPS problem, which allows more
than one operator to execute in one time step, as long as
those operators are non-interfering. This allows for the en-
coding to be significantly more compact in practice, com-
pared to only allowing one operator per step.

Definition 7 (Interference). Two STRIPS operators o1 =
(p1, e1) and o2 = (p2, e2) are interfering iff {v | v 7→ ⊤ ∈
pi}∩{v | v 7→ ⊥ ∈ ej} ≠ ∅, for all i ̸= j, and i, j ∈ {1, 2}.
For a set of STRIPS operators O, we denote the set of pairs
of interfering operators in O by intrfr(O).

Encoding 3. Consider a given natural number h and a
STRIPS problem Π = (V,R, I,O,G). For a STRIPS state
s, let st denote the propositional formula

(
∧
v ∈ {v | v 7→ ⊤ ∈ s}. vt) ∧ (

∧
v ∈ {v | v ∈ s}. ¬vt)

Also, for a variable v ∈ V , let add(v) = {(p, e) | v ∈ e} ∩
O and del(v) = {(p, e) | v ∈ e}∩O. The encoding Φ(Π, h)
is the conjunction of the following propositional formulae:

I0 (i)

Gh (ii)∧
t ∈ {0..h}.

∧
op ∈ O. opt −→ p(op)t∧

opt −→ e(op)t+1
(iii)∧

t ∈ {1..h}.
∧
v ∈ V. ¬vt−1 ∧ vt −→∨

op ∈ add(v). opt
(iv)

∧
t ∈ {1..h}.

∧
v ∈ V. vt−1 ∧ ¬vt −→∨

op ∈ del(v). opt
(v)

∧
t ∈ {1..h}.

∧
(op, op′) ∈ intrfr(O). opt ∨ ¬op′t (vi)

This encoding is defined over the atoms
{vt | v ∈ V ∧ 0 ≤ t ≤ h} ∪ {opt | op ∈ O ∧ 0 ≤ t < h}

In the encoding above the first conjunct stands for the ini-
tial state, the second for the goal, the third for the transi-
tion relation, the fourth and fifth are the frame axioms, and
the last is a constraint ensuring that if more than one oper-
ator execute in the same step, they are not interfering op-
erators. Also note that the actual encoding we verified only
computes the formula in CNF form, but we use syntactic
sugar in our definition and examples to improve readability,
e.g. x1 ∧ x2 −→

∨
y ∈ {y1, y2, ..}.y is syntactic sugar for

¬x1 ∨ ¬x2 ∨ y1 ∨ y2.., and x −→
∧
y ∈ {y1, y2, ..}.y is

syntactic sugar for (¬x ∨ y1) ∧ (¬x ∨ y2) ∧ ...
Example 4. Consider the STRIPS problem φ(FDR(P ))
from Example 3. Let h = 1 be the horizon. The encoding
is the conjunction of

(v0, 0)
0 ∧ ¬(v0, 1)0 (i)

¬(v0, 0)1 ∧ (v0, 1)
1 (ii)

(op00 −→ (v0, 0)
0 ∧ ¬(v0, 1)0)∧

(op0
0 −→ ¬(v0, 0)1 ∧ (v0, 1)

1)
(iii)

(¬(v0, 0)0 ∧ (v0, 0)
1 −→ ⊥)∧

(¬(v0, 1)0 ∧ (v0, 1)
1 −→ op0

0)
(iv)

((v0, 0)
0 ∧ ¬(v0, 0)1 −→ op0

0)∧
((v0, 1)

0 ∧ ¬(v0, 1)1 −→ ⊥)
(v)

⊤ (vi)
Decoding 3. Consider a horizon h, a STRIPS problem
Π = (V,R, I,O,G) and a model M ⊨ Φ(Π, h). Let, for
a set s, list(s) denote an arbitrary list which contains all
the elements of s, s.t. |s| = |list(s)|. Let for a list of lists
ls = [l0, l1, ..], flat(ls) denote the list l0⌢l1, .., where ⌢ is
the list append function. The decoding function is defined
Φ−1(Π, h,M) = flat([list({op | op0 ∈ M}), list({op |
op1 ∈ M}), .., list({op | oph−1 ∈ M})]).
Example 5. For the propositional formula in Example 4, a
model is {(v0, 0)0, (v0, 1)0, (v0, 0)1, (v0, 1)1, op0

0}. The de-
coded plan is [op0].



This translation to SAT is sound and complete.

Theorem 3. For a valid STRIPS problem Π and a hori-
zon h:(i) if M is a model for Φ(Π, h), then Φ−1(Π, h,M)
is a solution for Π and (ii) if ops is a solution for Π and
|ops| ≤ h, then there is a model for Φ(Π, h).

Proof sketch. (i) This proof is by induction on the horizon,
with generalising the initial state. It depends, crucially, on
the fact that non-interference implies that any order of oper-
ators coming from a single step is executable.
(ii) Let the operators in ops be [op0, op1, .., op|ops|−1]. We
construct a model for Φ(Π, h) by considering the sequence
of states traversed by executing the plan π at I , which can
be recursively specified as s0 = I , and st+1 = opt(st) for
0 < t ≤ h. The model we construct is

{optt | 0 ≤ t < |ops|}∪
{opt′

t | 0 ≤ t ̸= t′ < |ops|} ∪ {stt | 0 ≤ t ≤ |ops|}

Before we conclude, we note that other encoding methods
from FDR to SAT have also been proposed, e.g. Balyo 2013.

Abstract SAT Formulae to DIMACS
The SAT formulae produced by Encoding 3 are structured
in the following way: (i) the formulae use the connectives
∧,∨,→ and ¬ and (ii) atoms representing state variables
and operators are indexed by the time step. In a pen-and-
paper exposition this would be enough. However, this is
not enough in our case because there is still an encoding
step to simplify these structured formulae to DIMACS-CNF,
which is the representation of SAT formulae used in prac-
tice, and we do not want to trust that step. Thus, as a last
step, we present the following encoding of structured formu-
lae to DIMACS-CNF ASTs. That encoding has to simplify
the connectives as well as replace the structured variables
with integers.

Definition 8 (DIMACS-CNF). A DIMACS-CNF AST is a
list of lists of non-zero integers. A list of non-zero integers
[l1, l2, .., lm] is a model for a DIMACS-CNF AST [c1 =
[l11, l12..], c2 = [l21, l22..], .., cn = [ln1, ln2..]] iff for each
ci, for 1 ≤ i ≤ n, there is lj ∈ ci, where 1 ≤ j ≤ m, and,
for each 1 ≤ j, k ≤ m, lj ̸= −lk.

Encoding 4. For a STRIPS problems (V,R, I,O,G),
fix an arbitrary ordering V (O) of V (O) s.t. for a
state variable (operator) v (op), vi (opi) is the index
of v (op) in V (O). For an atom a and a horizon h,
let int(a) be defined as: (i) 1 + t + opi(h + 1), if
∃opt. a = opt and (ii) 1 + |O|(h + 1) + t + vi(h + 1)
if ∃vt. a = vt. For a propositional formula ϕ that
has no conjunctions, let simpORs(ϕ) be defined re-
cursively as follows:(i) simpORs(ϕ1)⌢simpORs(ϕ2), if
∃ϕ1, ϕ2. ϕ = ϕ1 ∨ ϕ2, (ii) [], if ϕ = ⊥, (iii) [−1, 1], if
ϕ = ⊤, (iv) [−simp(ϕ′)], if ∃ϕ′. ϕ = ¬ϕ′, and (v) [int(ϕ)],
if ϕ is an atom. Let simp(ϕ) be defined recursively as fol-
lows:(i) simp(ϕ1)⌢simp(ϕ2), if ∃ϕ1, ϕ2. ϕ = ϕ1 ∧ ϕ2 and
(ii) [simpORs(ϕ)] otherwise.

Note: int and var are adapted from Knuth 1998, Section 4.4
on encoding numbers with arbitrary radixes. Also, note that
simp is only well-defined if the given formula is a CNF,
which is not problematic since the formulae produced by Φ
are CNF for a valid STRIPS problem.

Example 6. Consider the CNF formula from Example 4.
First consider the following two orderings for the vari-
ables encoding operators and state variables: [op0] and
[(v0, 0), (v0, 1)]. The mapping of the time indexed vari-
ables to natural numbers is: int(op0

0) = 1, int(op1
0) = 2,

int((v0, 0)0) = 3, int((v0, 0)1) = 4, int((v0, 1)0) = 5,
and int((v0, 1)1) = 6. Applying simp to that formula re-
sults in [[3], [−5], [−4], [6], [−1, 3], [−1,−5], [−1,−4], [−1,
6], [3,−4], [5,−6, 1], [−3, 4, 1], [−5, 6], [−1, 1]]. This AST is
then pretty printed as DIMACS-CNF concrete syntax, like
the one in Fig. 1, which only shows 7 clauses.

Decoding 4. Consider a DIMACS-CNF AST encoding a
STRIPS problem (V,R, I,O,G) and a horizon h. Let,
for an integer n, the function var(n) be defined as:
(i) (O(|n|−1 mod h))(|n|−1)÷h, if |n| < 1+h|O| (ii) (V(k
mod h))k÷h, where k = |n|−h|O|−1, otherwise. Now, let
lit(n) be the literal var(n), if 0 < n, and ¬var(n) otherwise.

The correctness theorem for this step is as follows.

Theorem 4. For a valid STRIPS problems Π and a hori-
zon h: (i) if {l1, l2, ..} is a model for Φ(Π, h), then
{simp(l1), simp(l2), ..} is a model for simp(Φ(Π, h)), and
(ii) if [n1, n2, ..] is a model for simp(Φ(Π, h)), then
{lit(n1), lit(n2), ..} is a model for Φ(Π, h).

Proof sketch. The proof of both statements is by structural
induction on the formula Φ(Π, h).

.

Theorem 5. For a valid FD-AST P and a horizon h: (i) if
[n1, n2, ..] is a model for simp(Φ(φ(FDR(P )), h)) then a
plan for P is [AST (φ−1

O (op1)), AST (φ
−1
O (op2)), ..], where

[op1, op2, ..] = Φ−1(Π, h, {lit(n1), lit(n2), ..}), and (ii) if
[name1, name2, .., nameh] is a plan for P , then there is a
model for simp(Φ(φ(FDR(P )), h)).

Proof sketch. From Theorems 1, 2, 3 and 4.

Experimental Evaluation
We use Isabelle/HOL’s code generator to generate a Stan-
dard ML implementation of our correct encoding. Readers
interested in implementation details can inspect the attache-
ment. We evaluate the performance of our encoding com-
pared to the ∀-step encoding of Rintanen, Heljanko, and
Niemelä 2006 as computed by Madagascar when invariant
generation is disabled. Although this setup has a weakness,
namely, that Madagascar takes the PDDL domain as input
while our system takes the grounded output of Fast Down-
ward’s translator, it should indicate the scalability of the ver-
ified encoding and can be used to test Madagascar’s com-
pleteness. We compute the encodings of different planning
domains from previous competitions and then feed them



SAT UNSAT

Madagascar Verified Encoding Madagascar Verified Encoding
newopen 3128 2897 2214 2205

logistics 986 358 1031 452

elevators 75 14 61 44

rover 270 233 172 121

storage 66 35 41 33

pipesworld 46 9 74 7

nomystery 83 13 197 15

zeno 180 54 70 28

hiking 45 6 100 11

TPP 106 46 71 30

Transport 78 2 134 18

GED 68 19 105 19

woodworking 99 51 17 20

visitall 74 53 279 131

openstacks 62 — 316 62

satellite 46 34 20 20

scanalyzer 88 4 88 9

tidybot 24 — 12 —

trucks 45 8 117 29

parcprinter 113 63 128 111

maintenance 35 34 — —

pegsol 114 3 200 237

blocksworld 31 25 30 30

floortile 221 54 361 281

barman 20 — 208 34

Thoughtful — — — 5

Table 1: Number of solved satisfiable and unsatisfiable for-
mulae solved by Kissat for our encoding and the encoding
generated by Madagascar.

to the SAT solver Kissat, opting for a 30 minutes time-
out and a 8GB memory limit for encoding and solving.
We generate the encodings for horizons 2, 5, 10, 20, 50,
100, and the bounds generated by the algorithm of Abdu-
laziz 2019. We record a few findings. Firstly, we found a
bug in Madagascar: it produces unsatisfiable formulae for in-
stances and horizons, despite those instances having ∀-step
plans bounded by the horizon. This happens in at least 24 in-
stances of different variants of the Rovers and PARCPrinter
domains. This is because Madagascar adds incorrect action
mutex constraints which rule out valid ∀-step plans, thus
causing Madagascar to not be complete. The fact that such a
well-established planning system has such bugs demonstrate
that it is imperative we verify planning systems, especially
that there no generally succinct unsolvablity certificates do
not exist for AI planning algorithms.

Secondly, we compare the performances of our encod-
ing and Madagascar. (i) For most instances, our encoding
is solved by Kissat in significantly shorter time than Mada-
gascar. Kissat fails to terminate on Madagascar encodings of
some Rovers instances, while it succeeds for our encodings.
We note that Madagascar’s ∀-step encoding is linear in size
due to the use of auxiliary variables to represent the operator
interference clauses, while ours is quadratic. A hypothesis
is that auxiliary variables interfere with Kissat’s deduction

mechanisms, as has been reported about compact encodings
in other contexts (Knuth 2015)[Section 7.2.2.2]. However,
this needs further study. (ii) Since our verified implemen-
tation is purely functional in Standard ML, computing our
encoding takes longer time than Madagascar’s, e.g. we use
balanced trees instead of arrays, causing every access/update
to be worst-case logarithmic instead of constant time. This
leads to our encoding to have a worse total (i.e. grounding,
encoding and solving) running time, despite the fact that our
encoding is usually solvable in shorter time. A bigger prob-
lem is that, as Standard ML does not support lazy evaluation
and has poor memory management in general, our encoding
frequently runs out of memory as it computes the entire en-
coding in memory before producing any output. This leads
to less of our encodings being solved by Kissat compared to
the ones produced by Madagascar (see Table 1).

Discussion
We presented an executable formally verified SAT encoding
of AI planning. We showed details of the verification pro-
cess, and experimentally tested our encoding. Experiments
show that, although our verified encoder is primarily hin-
dered by its memory consumption, it can handle planning
problems of reasonable sizes, where it can solve, or show
bounded length plan non-existence. By testing Madagas-
car’s encoding against our verified encoding, we discovered
that Madagascar sometimes mistakenly claims that prob-
lems have no solutions of a certain length. Also, compared to
Madagascar, our encoding can be more efficiently processed
by the SAT solver Kissat. The size of the verified Standard
ML program is around 1.2K lines of code, and the size of
the formal proof is around 17.5K lines of proof scripts.

One goal of our work here is to showcase theorem prov-
ing and its application to verification as a methodology to in-
crease trustworthiness of planning software and, more gen-
erally, AI software. Although there are other approaches to
increase reliability of AI systems, most notably certification
for planning or SMT-based methods for verifying properties
of neural networks, we believe that correct-by-construction
algorithms have their niche. For instance, this is the case
when there are not general certification methods or when de-
sired formal properties are too complex for automated meth-
ods to practically handle.

As future work, the most interesting direction is to verify
the encoding of costs by Abdulaziz 2021, yielding formally
verified certificates of cost optimality. Another direction is
optimising the memory consumption of our implementation,
e.g. via lazy evaluation (Lochbihler and Stoop 2018), or by
using a low-level target language instead of Standard ML,
like LLVM (Lammich 2022).
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