
A Formally Verified IEEE 754 Floating-Point
Implementation of Interval Iteration for MDPs

ANONYMOUS

No Institute Given

Abstract. We present an efficiently executable, formally verified imple-
mentation of interval iteration for MDPs. Our correctness proofs span the
entire development from the high-level abstract semantics of MDPs to a
low-level implementation in LLVM that is based on floating-point arith-
metic. We use the Isabelle/HOL proof assistant to verify convergence of
our abstract definition of interval iteration and employ step-wise refine-
ment to derive an efficient implementation in LLVM code. To that end,
we extend the Isabelle Refinement Framework with support for reasoning
about floating-point arithmetic and directed rounding modes. We exper-
imentally demonstrate that the verified implementation is competitive
with state-of-the-art tools for MDPs, while providing formal guarantees
on the correctness of the results.

1 Introduction
MA

I think the focus for CAV
should be on:
A) Whether the formali-
sation of II is mathemati-
cally interseting, e.g. new
proofs, or insights
B) How the formalisation
of II refines the method-
olgy developed for formal-
ising iteration/DP algo-
rithms, and how much of
that is reusable in the fu-
ture
C) The verification of fp
arithmetic here and how
that is hard in general, any
methodological gains com-
pared to Moscato, for in-
stance, that can be reused.
D) Methdological gains
from connecting FP veri-
fication to mathemtaically
interesting algo’s like II –
that would have been hard
w/o step-wise refinement

Probabilistic model checking (PMC) [6,7] is a formal verification technique
for randomised systems and algorithms such as wireless communication proto-
cols [41], network-on-chip (NoC) architectures [54], or reliability and performance
models [8]. Typical properties checked by means of PMC relate to reachability
probabilities: What is the probability for a file to eventually be transmitted suc-
cessfully [20]? Is the probability for a NoC router’s queue to overflow within c
clock cycles below 10−5? What is the maintenance strategy that minimises ser-
vice outages within a given cost budget [56,55]? The system models that PMC
is applied to are specified in higher-level modelling languages such as Mod-
est [14,28] or JANI [17] with a formal semantics in terms of (extensions of)
Markov chains and Markov decision processes (MDPs) [13,52].

PMC delivers results with formal guarantees, typically that the computed
and (unknown) true probabilities differ by at most a user-specified ε. PMC is
thus well-suited for the design and evaluation of safety- and performance-critical
systems. Over the past decade, however, we have witnessed several threats to the
validity of PMC results. First and foremost, the most-used PMC algorithm, value
iteration (VI) was shown to be unsound, i.e. produce arbitrarily wrong results
for certain inputs [26]. Several sound replacements for VI were subsequently
developed [27,53,34], yet their soundness proofs have so far been pen-and-paper
style with room for human error. For example, the pseudocode for the sound
VI algorithm as stated in [53] contains a subtle mistake that only surfaces on 1

2 ANONYMOUS

of the 78 models of the Quantitative Verification Benchmark Set (QVBS) [35].
This calls for formal specifications of the algorithms accompanied by machine-
checked correctness proofs. Even correct algorithms, however, may be incorrectly
implemented in today’s manually-coded PMC tools. As a case in point, the
implementation of the interval iteration algorithm [27] for expected rewards [10]
in the mcsta model checker of the Modest Toolset [32] diverges on some
inputs. We thus need correct-by-construction implementations, too.

VI-based algorithms are iterative numeric approximation schemes that need
to be implemented via fixed machine-precision floating point arithmetic to obtain
acceptable performance [18,33]. This introduces approximation and rounding
errors that in turn may lead to incorrect boolean outputs [63]. A solution lies in
the careful use of the directed rounding modes provided by standard IEEE 754
floating-point implementations as in all of today’s common CPUs [31], which
however needs careful reasoning about floating-point errors and rounding in all
formal proofs and correctness-preserving implementation strategies.

Our contribution. We present a solution to all of the above challenges based on
the interval iteration (II) algorithm [27] for sound PMC on MDP models and the
interactive theorem prover (ITP) Isabelle/HOL [51] with its Isabelle Refinement
Framework (IRF) [46]:

– We formalise (i.e. model) II in Isabelle/HOL’s logic and formally prove its
correctness in Isabelle/HOL (Sect. 3), making II the first sound PMC algo-
rithm for MDPs with machine-checked correctness.

– We extend the IRF with support for floating-point arithmetic, including
directed rounding modes (Sect. 4.2), making it the first ITP-based algorithm
refinement approach suitable for II and similar algorithms.

– Using the IRF, we refine the formalisation of II into efficient LLVM bytecode
(Sects. 4.3 and 4.4), delivering the first correct-by-construction implementa-
tion of a PMC algorithm.

– We embed the code into mcsta, a competitive probabilistic model checker
(Sect. 5). We experimentally evaluate the performance using the QVBS
(Sect. 6), showing that the verified implementation is efficient.

MA

I can shorten the state-of-
the-art significantly.

State-of-the-art: Verification of PMC Algorithms. A probabilistic model checker
like mcsta performs preprocessing and transformation steps for both correct-
ness and performance. Previously, the strongly connected component [36] and
maximal end component decomposition [37] algorithms have been verified down
to LLVM, replacing their previous unverified implementations inside mcsta by
verified ones of comparable performance. These were fully discrete graph algo-
rithms, however, that neither required reasoning about numerical convergence
in their correctness proofs nor floating-point arithmetic in their refinement to
an efficient implementation. With this work, we contribute an essential piece for
the incremental replacement of unverified by verified algorithms for probabilistic
reachability in mcsta’s MDP model checking core.

Formally Verified Floating-Point Implementation of Interval Iteration 3

State-of-the-art: Verification of Probabilistic Algorithms. The verification of prob-
abilistic algorithms in theorem provers is a well-studied, albeit challenging, task.
This includes both, algorithms that use randomness [22,5] and probabilistic
analysis of otherwise classical algorithms [62,57,2]. Current research themes in-
clude improving methodologies for modelling such algorithms (e.g. the Giry
monad [24,23]) and improving ways to reason about these algorithms when mod-
elled as programs (e.g. quantitative separation logic [60,42]). The closest related
pieces of work formally verified the VI algorithm: In Coq by Vajjha et. al. [62]
and in Isabelle/HOL by Schäffeler and Abdulaziz [57]. In their work, they verified
the classical version of VI that optimises the expected discounted values.

In almost all previous formal randomised analyses of algorithms, the authors
the authors do not verify efficient implementations. This is due to the sheer dif-
ficulty of performing such analyses, as they need substantial formal mathemat-
ical libraries on analysis, probabilities, asymptotics, and transition systems. An
exception is Schäffeler and Abdulaziz [57], who formally verified a practical im-
plementation of VI. However, since their implementation used infinite precision
arithmetic, it could not compete with state-of-the-art floating-point implemen-
tations. Thus, the work we present here is the first, up to our knowledge, where
a full formal probabilistic mathematical analysis is performed and a competitive
floating-point implementation is also verified.

State-of-the-art: Verification of Floating-Point Algorithms. The verification of
numerical algorithms is an active field of research. For example, the work of Imm-
ler et al. [40] which formalizes and verifies the initial value problem of ordinary
differential equations. Their work also extracts exectuable ML code based on
arbitrary-precision floating-point numbers that are truncated in-between com-
putations for efficiency reasons. While highly important work, this does not
scale for PMC, which is why we look at IEEE-754 floating-point numbers that
scale much better due to dedicated hardware on most consumer CPU’s. The
fact that such floating-point implementations of algorithms deviate from the re-
spective mathematical models of algorithms is widely recognised as a problem.
Examples of bugs with potentially serious consquences were noted in the hard-
ware and aerospace industry [30,50]. Due to the complexity of floating-point
algorithms’ behaviour, and the failure of testing to reliably catch bugs in those
algorithms, there is a long tradition of applying formal methods to the verifica-
tion of floating-point algorithms. This was done in formal systems like Z [12],
HOL Light [30,29], PVS [49,16], and Coq [15,21]. Most of that previous work,
however, focused on proving correctness of fundamental algorithms implemented
in floating-point arithmetic. In contrast, we aim to do the correctness proofs on
algorithms using real numbers, which we implement as floating-point numbers
with directed rounding. This keeps our correctness proofs manageable while pre-
serving interesting properties, even for complex programs.

A related line of work aims to prove correctness by providing error bounds.
Tools like PRECiSA [61], FPTaylor [58], Real2Float [48] and Fluctuat [25] ana-
lyze the floating-point error propagation. They focus on determining the worst-
case roundoff error. While more expressive than our approach, these tools have

4 ANONYMOUS

limited to no support for programs with complex control flow, like e.g. nested
loops in the implementation of II.

The industrial-strength static analysis tool Astrée [19] is used in the aviation
and automotive industry to check absence of runtime errors. While it supports
programs using floating-point numbers, it cannot verify arbitrary correctness
properties. Frama-C [43] has similar functionality but supports deductive ver-
ification. However, it is restricted in its use, e.g. that outputs lie in a given
interval [44]. Similarly for other deductive verifiers like KeY [3], which can verify
the absence of exceptional values like Nan and infinity [1].

2 Preliminaries
MA

No need to use definition
blocks. Might save some
space

MA

No need for this long moti-
vation of MDPs for CAV

MA

Perhaps the example could
be minimised or even re-
moved. I think a very light
review of MDPs is needed
here since we can assume
they know a lot about
MDPs.

MA

Section Isabelle/HOL can
be made much shorter as I
think we should minimise
Isabelle syntax. We can
add to the appendix some
description of Isabelle’s
syntax along with more
extensive listings.

We now present the necessary background for the rest of the paper: we in-
troduce Isabelle and the Isabelle Refinement Framework, followed by IEEE 754
floating-point numbers and Markov Decision Processes in Isabelle/HOL.

2.1 Isabelle/HOL

An interactive theorem prover (ITP) is a program that implements a formal
mathematical system in which definitions and theorem statements are written,
and proofs are constructed from a set of axioms (derivation rules). To prove a
theorem in an ITP, the user provides high-level steps of a proof, and the ITP
fills in the details at the level of axioms.

We perform our formalization using the ITP Isabelle/HOL [51], which is a
proof assistant for Higher-Order Logic (HOL). Roughly speaking, HOL can be
seen as a combination of functional programming with logic. Isabelle is designed
to be highly trustworthy: a small, trusted kernel implements the inference rules
of the logic. Outside the kernel, a large set of tools implement proof automation
and high-level concepts like algebraic data types. Bugs in these tools cannot lead
to inconsistent theorems being proved, as the kernel refuses flawed proofs.

We aim to represent our formalization as faithfully as possible, but we have
optimized the presentation for readability. The notation in Isabelle/HOL is sim-
ilar to functional programming languages like ML or Haskell mixed with math-
ematical notation. Function application is written as juxtaposition: we write
f x1 . . . xn instead of the standard notation f(x1, . . . , xn). Recursive functions
are defined using the fun keyword and pattern matching. For partial functions,
we use the notation f = (λx ∈ X. g x), to explicitly restrict the domain of the
function to X. Where required, we annotate types as x :: type.

Isabelle/HOL provides a keyword locale to define a named context with as-
sumptions, e.g. an MDP with well-formedness assumptions [11]. Locales can be
interpreted and extended in different contexts, e.g. a locale for MDPs can be in-
stantiated for a specific MDP, which yields all theorems from within that locale.

Formally Verified Floating-Point Implementation of Interval Iteration 5

2.2 Isabelle Refinement Framework

Our verification of II spans the mathematical foundations of MDPs, the imple-
mentation of optimized algorithms and data structures, and the low-level LLVM
intermediate language [47]. To keep the verification effort manageable, we use
a stepwise refinement approach: starting with an abstract specification, we in-
crementally add implementation details, proving that each addition preserves
correctness, e.g. computing a fixed-point by iteration, or implementing MDPs
by a sparse-matrix data structure. The former specifies the control-flow of a pro-
gram, but the datatype remains the same. The latter we call data refinement.

This approach is supported by the Isabelle Refinement Framework (IRF) [46].
In the IRF, we define algorithms in the nondeterministic result (nres) monad,
where a program either fails or produces a set of results. The notation a ≤R c
denotes that every (non-deterministic) output of abstract program a is related to
an output of concrete program c via the refinement relation R. In other words, c
is an implementation of a. If a refinement step does not involve data refinement,
then we use ≤Rid

where Rid is the identity relation.
At the end of the refinement chain, we aim to have an efficient LLVM pro-

gram. Once sufficiently refined, the sepref [45] tool can automatically refine a
program to LLVM. As ≤R is transitive, the specification holds for this LLVM
program as well. MS

which specification, this is
mentioned the first time
here

BK

Note sure if I understood
you correctly, but we talk
about the specification in
the beginning of the sec-
tion, do you think we need
to make it clearer?

2.3 Floating-Point Arithmetic

Our work uses the formalization of the IEEE 754 floating-point standard in
Isabelle/HOL [64]. This library provides a generic type (e,f) float, where e is
the number of bits for the exponent, and f is the number of bits for the frac-
tion (also known as mantissa). Here, we use the type double = (11,52) float.
The IEEE floating point representation contains positive and negative num-
bers, as well as special values for ±∞ and not a number (NaN). The function
valof :: (e,f) float → ereal maps non-NaN floating point numbers to extended
real numbers, i.e., R∪̇{−∞,+∞}. Moreover, the formalization provides intuitive
predicates to identify special cases (e.g. is nan), as well as all standard floating-
point instructions like addition, multiplication, and comparisons.

2.4 Markov Decision Processes

Markov Decision Processes (MDPs) are widely used to model probabilistic sys-
tems with nondeterministic choices [52], e.g. in PMC, planning, operations re-
search and reinforcement learning [59,9]. Intuitively, an agent interacts with an
environment by choosing actions that, together with random elements, influence
the state of the system. The agent has an objective, e.g. to avoid certain states,
and therefore needs to choose actions such that the probability of achieving
the objective is optimized. Many important concepts defined in this section are
illustrated in Example 1. We work with the following formal definition:

Definition 1 (MDP). A finite MDP is a pair M = (S,K) where

6 ANONYMOUS

– S is a finite and non-empty set of states.
– K is the transition kernel, a function K : S → 2P(S) that maps every state

to a finite, non-empty set of actions in the form of transition probabilities.
P(S) denotes the set of probability measures on S, i.e. functions p : S → [0, 1]
where

∑
s∈S p(s) = 1. Furthermore for s ∈ S, K(s) is closed w.r.t. S: for all

a ∈ K(s), a(s′) > 0 implies s′ ∈ S.

Our formalization of II builds on an existing MDP formalization from the
Isabelle/HOL library Markov Models [39,38]. MDPs are modeled with a generic
type ′s mdpc and a locale Finite MDP that, in combination, contain the states,
the transition kernel and well-formedness conditions (Locale 2.1, cf. Def. 1). In
the following, we abbreviate the projections states M and actions M as S and
K. The type of the states is ′s, and ′s pmf is the type of discrete distributions
over ′s. For a distribution p :: ′s pmf, setpmf p denotes its support, i.e. the set of
states with non-zero probability.

locale Finite MDP = (Locale 2.1)
fixes M :: ′s mdpc and S and K
defines S = states M and K = actions M
assumes S ̸= ∅ and finite S and ∀s. K s ̸= ∅ and ∀s ∈ S. finite (K s)
assumes ∀s ∈ S. (

⋃
a ∈ K s. setpmf a) ⊆ S

A strategy chooses an action based on the current state and the history
of visited states. In the formalization, we work with configurations, which are
pairs of states and strategies. A configuration is valid if the strategy selects only
enabled actions and the state of the configuration is part of the state space. The
set of all valid configurations is denoted by validcfg . Given a configuration and
an MDP, the probability space of infinite traces T cfg is constructed from the
induced Markov Chain, where each state is a configuration.

The study of MDP subcomponents plays an important role in the analysis
of II. A sub-MDP M ′ = (S′,K ′) consists of a subset of states S′ ⊆ S and a
restricted kernel K ′ where ∀s ∈ S′. K ′(s) ⊆ K(s). M ′ is called closed if for all
a ∈ K ′(s), we have a(s′) > 0 implies s′ ∈ S′. A sub-MDP is strongly connected
if every state is reachable from every other state via a sequence of actions. A
closed and strongly connected sub-MDP is an end component. A maximal end
component (MEC) is an end component that is not a sub-MDP of any other end
component. Finally, trivial MECs are MECs with one state and no actions, and
a bottom MEC is a MEC from which no other MEC is reachable.

0 1

2 3

α

1

β 0.1

0.9

γ1

δ

0.5

0.5

ϵ 1

Fig. 1. A simple MDP
with four states and five
actions.

Reachability In our PMC setting, the objective is to
optimize the strategy to minimize or maximize the
long-term reachability probabilities of a set of target
states U ⊆ S. The value function Pcfg :: ′s ⇒ real
gives the probability of reaching U in the Markov
Chain induced by the configuration cfg. Minimal and
maximal reachability probabilities are denoted by Pinf

and Psup respectively. Pinf is defined as the infimum

Formally Verified Floating-Point Implementation of Interval Iteration 7

of Pcfg over all valid configurations (Psup is defined
analogously). We also introduce the Bellman optimal-
ity operators Finf and Fsup (Def. 2.1, Fsup omitted).
For a state s ∈ S and a value vector v, Finf v s denotes the minimal expected
value of x after one step from s. The symbol

d
denotes the infimum.

The least fixed point (lfp) of Finf is Pinf , so elementary fixed point theory
tells us that iterating a lower bound of Pinf leads to Pinf in the limit (the same
holds for Fsup and Psup). To perform II, we need to preprocess the MDP such
that the gfp of Finf is the same as Pinf , and then iterate Finf on both a lower
and an upper bound to compute an approximation of Pinf .

definition Finf v = (λs ∈ S. if s ∈ U then 1 else (Def. 2.1)d
a ∈ K s.

∑
t ∈ setpmf a. v t ∗ pmf a t)

Example 1. Fig. 1 shows an MDP with four states, S = {0, 1, 2, 3}. The outgoing
transitions from each state represent the actions in the MDP. Each transition
leads to a black dot and branches into the successor states with corresponding
probabilities. For example in state 0, K(0) = {α, β}. The agent can choose α to
move to state 2, or β to have a 10% chance to move to state 1.

Let the target states U = {3}. The reachability probabilities are Pinf(2) = 0.5
and Psup(2) = 1. The MDP has a single bottom MEC {3} with action {ϵ}, and
a single trivial MEC {2}. The states {0, 1} form a MEC with actions β and γ.

3 Interval Iteration in Isabelle/HOL
MA

Here I think the Isabelle
notation looks very similar
to the maths notation, so
it is accessible. However, I
think using maths notation
will save a lot of space.
IMO the formalisation
should be mentioned if it
found something wrong/d-
ifferent in the maths or if
it is difficult for a funda-
mental reason.
E.g. proof of thm 4.3 is
discussed as it is different
from the standard proof,
but it is different as the
formalisation supports de-
terministic policies. Maybe
it should be highlighted if
the restriction is mathe-
matically interesting or is
it a formalisation quirk.
A lot of the theorem state-
ments are there for no
clear reason, as they are
not use in later proofs, and
nothing about their proofs
is mentioned. Maybe in
this case they should be
mentioned briefly and not
as theorem statements...

MA

I hate to repeat this: we
should minimise listings
here and rather state what
where the challenges of
formalising definitions and
only display a listing if it
makes that clearer. I think
this should especially be
done if the challenges are
independent of Isabelle,
and more about formal vs.
informal, rather than some
isabelle-specific difficulty.
You could reuse a similar
strategy as in the AAAI
papers: review a concept
(e.g. MDP), and at the
same time mention how it
is formalised.

The interval iteration (II) algorithm for MDPs [27] is an iterative solution
method for reachability problems based on value iteration. In contrast to stan-
dard value iteration, there is a simple and sound stopping criterion. We formalize
II and preprocessing routines and prove their correctness in Isabelle/HOL.

3.1 The Interval Iteration Algorithm

The idea of the II algorithm is to start with a lower and an upper bound on the
true reachability probability and iterate the Bellman optimality operator Finf

(Fsup) on both. Since the optimality operators are monotone, both sequences
converge to a fixed point. On arbitrary MDPs, these fixed points are not neces-
sarily the same. However, if the MDP is preprocessed to only contain maximal
end components (MECs) that are trivial or bottom MECs, both fixed points are
equal to the optimal reachability probabilities. For now, it is sufficient to assume
that the MDP has a single target state s+ and a single avoid state s−, that are
both sinks.

As the initial lower bound lb0, we take the function that assigns 1 to s+ and
0 to all other states. The initial upper bound ub0 assigns 0 to s− and 1 to all
other states. Next, we define the iterated lower and upper bounds lbinf n and
ubinf n as the n-fold application of the Bellman optimality operator Finf to the
initial lower and upper bounds lb0 and ub0:

8 ANONYMOUS

definition lbinf n = (Finf)
n lb0 and ubinf n = (Finf)

n ub0 (Def. 3.1)

It is an immediate consequence of the monotonicity of the Bellman optimality op-
erators that the lower (upper) bounds are monotonically increasing (decreasing).
Clearly, lb0 is a lower bound and ub0 is an upper bound of Pinf . Additionally, we
formally derive that the Bellman optimality operators preserve upper and lower
bounds in Lemma 3.1.

lemma assumes x ≤ Pinf shows Finf x ≤ Pinf (Lemma 3.1)
lemma assumes x ≥ Pinf shows Finf x ≥ Pinf

These two are the only properties of the abstract II algorithm that we need for
the refinement proof in Sect. 4. Last, in Thm. 3.1 we show that after any number
of iterations, II indeed computes bounds for the reachability probabilities. The
theorems for Psup are all analogous.

theorem lbinf n ≤ Pinf and Pinf ≤ ubinf n (Thm. 3.1)

3.2 Reduced MDPs

II is only guaranteed to converge if the MDP is reduced, i.e. all MECs are trivial
or bottom MECs. We therefore need to preprocess the MDP before applying II.
The preprocessing steps differ for Pinf and Psup, they are called min-reduction
and max-reduction.

As a first step, we extend the existing MDP formalization [38] with SCCs
(strongly connected components) and bottom MECs (Def. 3.2). The states of an
MDP that form trivial or bottom end components are called trivials or bottoms
respectively. We follow [27] and call an MDP reduced if all of its MECs are
either trivial or bottom MECs. Reduced MDPs are relevant because the gfp of
the Bellman operator of a reduced MDP is equal to its lfp.

definition bmec M b = (Def. 3.2)
mec M b ∧ (∀s ∈ states b. actions b s = K s)

Min-Reduction We formalize the min-reduction algorithm for MDPs: it trans-
forms an arbitrary MDP with a single target state s+ into a reduced MDP with
the same minimal reachability probabilities. The main insight is that for a min-
imal reachability problem, all non-trivial MECs other than s+ can be assigned
probability 0: there exists a strategy that almost surely forever stays in the MEC
and therefore never reaches s+. Hence, all such MECs may be collapsed into a
single absorbing state s−. To formalize this transformation, we first define a
function red inf (Def. 3.3) mapping the states, and then apply it to the MDP M
to obtain the reduced MDP Minf (Def. 3.4).

fun red inf where (Def. 3.3)
red inf s+ = s+
red inf s = if s ∈ trivials M then s else s−

Formally Verified Floating-Point Implementation of Interval Iteration 9

definition Minf = fix loop s− (mapmdpc red inf M) (Def. 3.4)

The function mapmdpc (defined in [39]) applies a function to every state of
an MDP. If the function merges states, mapmdpc merges the action sets. Finally,
fix loop s− replaces the actions at s− with a single self-loop. See Fig. 2 for the
min-reduced version of the MDP from Fig. 1.

s−

s+2
δ

0.5

0.5

1

1

Fig. 2. Min-reduced
MDP from Fig. 1.

We now prove that the transformation preserves
Pinf . The formal proof of the fact that Minf is in fact a
reduced MDP follows the original [26]. To distinguish
the reachability probabilities of the original and the
reduced MDP, we use the notation Pinf for the orig-
inal MDP and Minf .Pinf for the reduced MDP. Our
proof that the min-reduction algorithm preserves Pinf

is based on the fact that it preserves the finite-horizon
probabilities P≤

inf n (Lemma 3.2), i.e. the reachability
probability in n steps. Now, the main claim (Thm. 3.2,
[27, Proposition 3]) is a direct consequence. Note that
our proof is simpler and more precise than the origi-
nal: in [27], the authors only argue that for every strategy in the reduced MDP
there exists a strategy in the original MDP with the same Pinf and vice versa.

lemma assumes s ∈ S shows P≤
inf n s = Minf .P≤

inf n (red inf s) (Lemma 3.2)

theorem assumes s ∈ S shows Pinf s = Minf .Pinf (red inf s) (Thm. 3.2)

01

2 s+

s−

α

1 δ

0.5

0.5

1

1

Fig. 3. Max-reduced
MDP from Fig. 1.

Max-Reduction Maximal reachability probabilities
can similarly be handled with a max-reduction, but
the procedure is more involved. Not all non-trivial
MECs can be collapsed into a single state, as Psup

would not be preserved: A maximizing strategy might
choose to leave a non-trivial MEC. We can, however,
first collapse each MEC into a single state to obtain
an MDP MMEC . In a second step, we map the bottom
MECs to s−. Finally, we remove self-loops at all states
except s+ and s−. See Fig. 3 for the max-reduced ver-
sion of the MDP from Fig. 1.

Collapsing the MECs into a single state is done by
the function the mec, the transformation preserves Psup (Thm. 3.3). Our proof
resembles the proof of [4, Theorem 3.8], however we have to work around the fact
that the MDP formalization only supports deterministic policies [38]. Note that
every state of MMEC now forms its own MEC. The second part of the reduction
is similar to the min-reduction.

theorem assumes s ∈ S (Thm. 3.3)
shows Psup s = MMEC .Psup (the mec M s)

Proof. (≤) As collapsing MECs only shorten paths in the MDP, the proof pro-
ceeds similarly to the one for min-reduction via finite-horizon probabilities.

10 ANONYMOUS

(≥) Consider an optimal strategy πMEC in MMEC , we need to show that
there exists a strategy in M with the same reachability probability. Every MEC
m of M contains a state sπm where the action selected by πMEC is enabled.
Moreover, within a MEC, we can obtain a deterministic, memoryless strategy
πm that reaches this state with probability 1. Thus we can construct a strategy
in M that behaves like πm within each MEC until sπm is reached and then follows
πMEC . The reachability probability of this strategy in M is the same as in MMEC .

3.3 Reachability in Reduced MDPs

From now on we assume that we are working with a reduced, finite MDP M
where each state is a trivial or bottom MEC. We show that in such an MDP,
over time any strategy reaches a bottom MEC almost surely. This is the key
property that will then allow us to prove the convergence of II.

Level Graph First, we build a level graph of the MDP, starting at the bottom
MECs (Def. 3.5). At level n+ 1, we add all those states where every action has
a successor in level n or below. We define I to be the greatest non-empty level
of the level graph G. Thus I is the smallest number of steps that allows us to
reach a bottom MEC from every state. We formally show that G has the desired
properties, i.e. it is acyclic and contains every state at exactly one level.

fun G where (Def. 3.5)
G 0 = bottoms M
G (n+ 1) = let G≤n =

⋃
i ≤ n. G i in

{s ∈ S \ G≤n. ∀a ∈ K s. G≤n ∩ a ̸= ∅}

Reachability of BMECs We now show that intuitively, every strategy eventually
descends through the levels of G to reach a bottom MEC. The rate at which a
bottom MEC is encountered depends on the smallest probability of any transi-
tion in the MDP, called η. At every step, the probability of descending a level
wrt. G is at least η. Hence we can show that for any valid configuration, the
probability to reach the bottom MECs in I steps is no less than ηI :

lemma assumes cfg ∈ validcfg shows ηI ≤ P≤
cfg I (Lemma 3.3)

The value P≤
cfg n denotes the finite-horizon reachability probability of the

bottom MECs in n steps under configuration cfg. Note that the lemma was orig-
inally stated for safety instead of reachability problems. We transform it using
the well-known equivalence P≤n

π (♢U) = 1−P≤n
π (□¬U). For multiples n of I, we

obtain a stronger lower bound of 1 − (1 − ηI)n (Thm. 3.4, [27, Proposition 1]).
As n increases, (1 − ηI)n converges to 0 and therefore P≤

cfg nI tends towards 1.
Since we chose cfg arbitrarily, this means that we almost surely reach a bottom
MEC in the limit.

theorem assumes cfg ∈ validcfg shows 1 − (1 − ηI)n ≤ P≤
cfg nI (Thm. 3.4)

Formally Verified Floating-Point Implementation of Interval Iteration 11

3.4 Convergence of Interval Iteration

We now assume a special form of reduced MDPs, where the only bottom MECs
are {s+} and {s−} (Locale 3.1). The MDP has a single target state s+ and a
single avoid state s−, that both are absorbing: returnpmf s is the probability
mass function that assigns probability 1 to state s. The reduced MDPs from
Sect. 3.2 are instances of this locale.

locale MDP Reach = Finite MDP M + (Locale 3.1)
assumes

s− ∈ S and s+ ∈ S and ∀s ∈ S \ {s+, s−}. s ∈ trivials M and
K s− = {returnpmf s−} and K s+ = {returnpmf s+}

Towards a convergence proof of II, we first show that the lower and upper
bound sequences relate to finite-horizon reachability probabilities of both s+
and s− (Lemma 3.4, [27, Lemma 4]). In this section, we indicate the target sets
explicitly. Again, we only present results for minimal probabilities, the results
for maximal probabilities are analogous.

lemma (Lemma 3.4)
assumes s ∈ S
shows lbinf n s = P≤

inf {s+} n s and ubinf n s = 1 − P≤
sup {s−} n s

Combined with Thm. 3.4 we can give a bound on the difference between both
II sequences (Thm. 3.5). Note that this convergence result in general only holds
if all computations are carried out with arbitrary precision arithmetic. In our
concrete implementation, i.e. in a floating point setting, the convergence to a
unique fixed point is not guaranteed. Still, this theoretical result motivates the
usage of the II algorithm to optimally solve reachability problems on MDPs.
In practice, on most instances the algorithm converges much faster than the
theoretical bound suggests (see Sect. 6 for experimental results).

Finally, the theorem is not applicable if all probabilities in the MDP are
equal to one, i.e. there is no branching after an action is selected. In this case,
the MDP is deterministic and is better solved with qualitative solution methods.
Note that [27] also assume η < 1.

theorem (Thm. 3.5)
assumes s ∈ S and ϵ > 0 and η ̸= 1 and n ≥ ⌈log(1−ηI) ϵ⌉ ∗ I
shows ubinf n s − lbinf n s ≤ ϵ

Proof. As a first step, we show for all i:

ubinf iI s − lbinf iI s = 1 − P≤
sup {s−} iI s − P≤

inf {s+} iI s (Lemma 3.4)
≤ 1 − (P≤

inf {s−} iI s + P≤
inf {s+} iI s) (P≤

inf ≤ P≤
sup)

= 1 − P≤
inf {s−, s+} iI s (Disjoint events)

≤ (1 − ηI)i (Thm. 3.4)

Set i = ⌈log(1−ηI) ϵ⌉ and the theorem follows from monotonicity.

12 ANONYMOUS

4 Refinement using Floating-Point Arithmetic

In the next step, we use the IRF to refine the abstract specification of II to
an efficient LLVM implementation. In our executable version, we implement real
numbers using IEEE 754 double precision floating-point numbers (floats). Due to
dedicated hardware support on modern consumer processors, floats have com-
petitive performance. However, the rounding errors inherent to floating-point
arithmetic make the refinement tricky. We propose an approach based on di-
rected rounding modes to refine reals to upper bounding (ub) or lower bound-
ing (lb) floats. A further challenge is that during II, the rounding mode needs
to be switched regularly. Most consumer CPUs set the rounding mode through
a global flag, which is both time-consuming [31] and cumbersome to reason
about in the IRF. Instead, we use the AVX512 instruction set which supports
operation-specific rounding modes.

We first introduce the sepref tool for refinement to LLVM, after which we
present our extension of the IRF and sepref for floats. We use that to obtain
correct-by-construction LLVM code for II.

4.1 The Sepref Tool

We use sepref [45] to automatically refine an algorithm to an LLVM program.
sepref contains a library of data structures and operations that it can automati-
cally refine to LLVM. As these data structures may access the heap, we need to
use (separation logic) assertions that extend refinement relations with a heap.

Example 2. We demonstrate how we use assertions in the IRF with the following
example.

1 definition ls app x xs = xs @ [x] and half nat n = n div 2
2 definition apphalf n xs = do { let n′ = half nat n; return ls append n′ xs }
3 lemma (rshift1, half nat) ::Asize → Asize

4 lemma (arl app, ls app) :: [λn xs. length xs < 263−1]Asize→Ad
arl→Aarl

5 lemma (arl apphalf, apphalf) :: [λn xs. length xs < 263−1]Asize→Ad
arl→Aarl

Line 1 defines ls app (insert an element at the end of a list) and half nat
(divide a natural number in half). Both are used in the definition of apphalf in
Line 2. The standard library of sepref has LLVM implementations for lists as
array lists (Aarl), and natural numbers as 64-bit signed words (Asize). The A
indicates that these are assertions. For example, half nat can be refined with the
LLVM program rshift1, which performs an efficient bit shift to the right.

For sepref to use such refinements, they need to be registered in the format
of Line 3. The lemma states that rshift1 and half nat are related as follows: if
the inputs of half nat (a natural number) and rshift1 (of type size) are related
via Asize , then the outputs are related via Asize . Line 4 provides a refinement
of the append operation following the same principle, only now with two inputs.
Moreover, the precondition length xs < 263 − 1 limits the length of the input
list. Finally, the superscript d indicates that the input is destructively updated.

Formally Verified Floating-Point Implementation of Interval Iteration 13

With all these rules registered to sepref, we can automatically refine app half.
We provide a signature so that sepref knows which data structure to use:

[λn xs. length xs < 263 − 1]Asize→Ad
arl→Aarl .

sepref automatically translates this into the LLVM program arl app half based
on rshift1 and arl append. We also obtain the refinement relation in Line 5.

4.2 Floating-Point Extension of the Isabelle Refinement Framework

We extend the IRF with two data refinements to reason about floating-point
arithmetic: real numbers to lb floats and real numbers to ub floats. Since the
ub case is mostly symmetric to the lb case, we focus on lb floats. We aim to
construct a refinement relation that never produces NaN for the operations we
support. NaN is incomparable, rendering it incompatible with a framework that
reasons about bounds. Furthermore, the operations we support must preserve
upper/lower bounds: the float −2f (subscript f denotes floats) is a lower bound
of 1, yet −2f ∗ −2f = 4f is not a lower bound of 1 ∗ 1 = 1.

To resolve this, we only consider non-negative floats. We define the refinement
relation Rlb = {(fl,r). valof fl ≤ r ∧ ¬is nan fl ∧ valof fl ≥ 0} which relates re-
als to lb floats, e.g. (2f , 3) ∈ Rlb , but (−2f ,−1) ̸∈ Rlb , as −2f is negative. Since
floats are pure, e.g. they do not need allocated memory. This means that the
assertion Alb ignores the heap and is in essence Rlb .

We now present the operations supported by our framework. Note that this
presentation is not exhaustive, but we focus on the operations required for our
use-case.

Fused multiply-add The ternary operation fma a b c = a ∗ b + c represents fused
multiply-add. Compared to separately multiplying and adding, it yields a smaller
floating-point rounding error. We name the AVX512 operation for fma with
rounding mode to negative infinity fma avx lb and prove the following refine-
ment:

lemma (fma avx lb, fma) :: Alb → A>0
lb → Alb → Alb (Lemma 4.1)

This lemma states that for all inputs that are lb, not NaN and non-negative, the
output is also lb, not NaN and non-negative. Note that the result of 0f ∗ ∞f is
NaN. We resolve this problem with the stricter assertion A>0

lb that only allows
positive finite floats. In the case of II, the transition probabilities from the input
model satisfy this assertion.

Comparison Comparisons are not preserved among equally bounding floats since
floating-point errors can stack up arbitrarily. We can only preserve information
partially by implementing them as mixed operations (e.g. comparing lb to ub).

definition leq sound a b = spec (λr. r −→ a ≤ b) (Lemma 4.2)
lemma (leq double, leq sound) :: Aub → Alb → Abool

14 ANONYMOUS

Similarly, by swapping rounding modes we get complete instead of sound com-
parisons. The specification of a sound but incomplete comparison is defined using
the spec function: the operation must return False if a > b and can return any-
thing otherwise. Consider the following 2 cases. Case 1: 4f is a ub of 2, and 3f
is an lb of 5, we have 2 ≤ 5 but 4f ̸≤ 3f ; Case 2: 3f is a ub of 2, and 4f is an
lb of 5, we have 2 ≤ 5 and 3f ≤ 4f . So for two identical comparisons of reals,
we have two implementations with different outcomes. Similarly, subtraction can
also only be implemented as a mixed operator.

Min & max It is possible to refine the minimum (min) and maximum (max)
operations directly using comparisons. We define the following refinement:

definition min double fl1 fl2 = (if fl1 ≤ fl2 then fl1 else fl2) (Lemma 4.3)
lemma (min double, min) :: Alb → Alb → Alb

This refinement holds despite the fact that a comparison does not reveal any-
thing about the bounding floating point number. Consider the following case:
4f is a lower bound of 5 and 3f is a lower bound of 6. min double 4f 3f = 3f
is a lower bound of min 5 6 = 5, even though the floating-point implementa-
tion returns the first argument, while the definition on reals returns the second
argument. The refinement for ub and max proceeds analogously.

Constants We provide the obvious refinements for the real number constants 0
and 1, they can be exactly represented as floating-point numbers.

4.3 Refinement of Interval Iteration

lb

ub

V
al

ue

Iterations

lbf

ubf

Pinf

Fig. 4. The valuation for an
MDP state over successive it-
erations: reals (grey) vs. floats
with safe rounding (blue). The
dashed red line marks the
reachability probability.

Using our floating-point extension to the IRF, we
now derive an implementation of II that imple-
ments the abstract specification from Sect. 3 using
floats and conservative rounding. The IRF allows
us to reuse the correctness proofs of the abstract
specification, and reason about the correctness of
the implementation in isolation. Through this sep-
aration of concerns we avoid directly proving the
floating-point implementation correct.

The plot in Fig. 4 shows a fictive run of II on
both reals and floats using the refinement relation
Alb . In the long run, II converges to the dashedMS

is this visible in the print
version (bw)?

red line Pinf . The grey lines denote the valuations
of an MDP state using reals, lb starting from lb0
and ub from ub0. Implementing lb with floats using
Alb yields the blue line lbf (similarly for ub using
Aub). Note that the deviantions are exaggerated in this example. In practice,
the errors are so small that no visual differences would appear in a to-scale plot.

Formally, the following specification states soundness of II, i.e. the outputs
are lower and upper bounds of the reachability probability:

Formally Verified Floating-Point Implementation of Interval Iteration 15

definition ii inf spec M = (Def. 4.1)
spec (λ(x, y). ∀s ∈ states M. x s ≤ Pinf M s ∧ Pinf M s ≤ y s)

Despite the fact that convergence follows from Thm. 3.5, we have excluded
it from the specification. As we will discuss in Sect. 4.5, this would yield a
void statement for our implementation with floats. As a first step towards the
refinement to LLVM, we define II in the nres-monad (the sup case is analogous):

1 definition ii gs inf M L = (Def. 4.2)
2 x ← lb0 M; y ← ub0 M; i ← 0; flag ← True;
3 while (i++ < L ∧ flag) (
4 (x,y) ← F gs

inf M x y
5 flag ← spec(λx. True))
6 return (x,y)

We define ii gs inf in Line 1. It takes as inputs an MDP M, and a maxi-
mal iteration count L to guarantee termination. Line 2 initializes variables, most
importantly the lower bounds lb and upper bounds ub. The flag signals early ter-
mination before L iterations, which is sound because the specification ii inf spec
is satisfied after any number of iterations. In each iteration, we first update the
valuations according to a Gauss-Seidel variant of Finf (Line 4): we update lb and
ub in-place, thereby we already use the updated values in the current iteration
and converge faster.

The algorithm is now in a format ready for refinement proofs to LLVM. Using
the setup from Sect. 3 and Lemma 3.1, it is straightforward to prove that the
algorithm refines the specification:

theorem ii gs inf M L ≤Rid
ii inf spec M (Thm. 4.1)

4.4 Refinement of the mcsta Data Structure

The motivation behind refining II to LLVM code is to embed it into the model
checker mcsta from the Modest Toolset [32]. mcsta is an explicit-state proba-
bilistic model checker that also supports quantitative model checking of MDPs.
To avoid costly conversions of the MDP representation at runtime, we model the
MDP data structure of mcsta as a 6-tuple in Isabelle/HOL:

(St::nat list, Tr::nat list, Br::nat list, Pr::real list, ua::nat, ut::nat).

For each state, St contains an index into Tr, pointing to the first transition
(action) of the state. Similarly, for each transition, Tr contains an index to
Br and Pr, pointing to the first branch of the transition and its probability.
Finally, Br contains indices pointing back to St, respresenting the target state
of the branch. Additionally, ua, ut are the avoid and target states respectively.
Example 3 illustrates this data structure.

Example 3. A possible representation of the MDP from Fig. 1 is St = [0,2,3,4,5],
Tr = [0,1,3,4,6,7], Br = [2,0,1,0,1,3,3], Pr = [1.0,0.9,0.1,1,0.5,0.5,1.0]. The val-
ues of ua and ut contain the index of the avoid and target state.

16 ANONYMOUS

Refinement Relation We relate the abstract MDP type mdpc to the concrete
data structure of mcsta with the refinement relation RM (definition omitted).
For example, RM contains a tuple of the MDP of Fig. 1 and Example 3 along
with each other instance of the data structure in Sect. 4.4 along with the MDP
it represents. These lists present in the Isabelle/HOL model of the data structure
can be directly refined to arrays of 64-bit integers (signed for compatibility with
mcsta). Through composition we obtain assertion AM that maps an abstract
MDP to LLVM.

Refinement of Operations We use sepref to refine the functions lb0, ub0, F gs
inf

and flag that are used by II. Refining lb0 and ub0 to the concrete data structure
is straightforward: we initialize an array and set entries to constants 0f or 1f .
The floating-point refinement of F gs

inf builds on fma and min (max for F gs
sup) from

Sect. 4.2. Finally, we implement flag as follows: we compare the upper and lower
bound, and set the flag if the difference is less than ε, to be specified by the
user. Using the above refinements for all operations in ii gs inf, we use sepref to
obtain an LLVM algorithm ii gs inf llvm within Isabelle/HOL.

4.5 Correctness Statement

The final step is to prove that the LLVM algorithm ii gs inf llvm adheres to
the specification ii inf spec by combining the refinement in Thm. 4.1 with the
refinements implicitly described in Sect. 4.4 through transitivity. Our correctness
statement takes the form of a Hoare triple.

1 theorem llvm htriple (Thm. 4.2)
2 (Asize n ni ⋆ Asize L Li ⋆ Aub ε εi ⋆ AM M Mi

3 ⋆ ↑(MDP Reach M ∧ n+1 < max size ∧ n = card (states M)))

4 (ii gs inf llvm Li ni εi Mi resi)

5 (λ(lbf ,ubf). ∃lb ub. Aout
lb lb lbf ⋆ Aout

ub ub ubf
6 ⋆ ↑(∀s ∈ states M. lb s ≤ Pinf M s ≤ ub s))

Lines 2 and 3 specify the preconditions, where Line 2 states the input data:
n and L are natural numbers implemented as 64-bit words ni and Li; ε is a
real number implemented as float εi and M is the MDP implemented as Mi.
The separation conjunction ⋆ specifies that these implementations are allocated
to disjoint places on the heap. Line 3 is a boolean predicate lifted to separation
logic using ↑. It states that M satisfies locale MDP Reach (Locale 3.1) and limits
the number of states to the largest 64-bit number.

If these preconditions hold, a run of the algorithm (Line 4) yields the arrays
lbf and ubf that satisfy the postconditions in Lines 5 and 6. These state that
lbf is a lower-bound implementation of lb, which is in turn a lower bound of Pinf

(similarly for ub). Due to this last fact induced by the refinement, we cannot
guarantee convergence of lbf and ubf . However, we experimentally show that
convergence is generally achieved with our implementation.

Formally Verified Floating-Point Implementation of Interval Iteration 17

5 Implementation

We use the LLVM code generator of the IRF to export the LLVM program
ii gs inf llvm for use in the LLVM compiler pipeline. Additionally, it generates
a C header that allows easy embedding into other software, e.g. mcsta.

Integration with mcsta We integrate our verified implementation into the mcsta
pipeline, replacing the existing unverified interval iteration algorithm. When
integrating the library, we aim to have as little error-prone glue code as possible.
mcsta stores the MDP with real-valued probabilities as 128-bit rationals (a pair
of 64-bit longs representing the numerator and denominator). For the MDP data
structure Mi, we need to obtain two floats that are lower and upper bounds of the
rational probability. We convert the probabilities to 64-bit doubles by directly
converting the numerator and denominator to doubles and performing a division
twice, once rounding up and once rounding down.

We assume that the input MDP as produced by the mcsta pipeline is well-
formed. If there is a bug in the parser that produces MDPs that are not well-
formed, we lose our formal guarantees. Until we have a fully verified toolchain,
this remains a risk.

Interpretation of the output Thm. 4.2 states that performing finitely many it-
erations using precise arithmetic provides us with lower and upper bounds (lb
and ub) on the actual reachability probability. However, the implementation pro-
vides outputs as floats lbf and ubf which are conservative bounds: They provably
bound the solution. However, whereas we can prove that lb and ub converge, this
does not hold for lbf and ubf . We experimentally validate that we still converge
up to ε by running a broad set of benchmarks.

6 Experiments

We experimentally evaluate the performance of our implementation on standard
benchmark MDPs. The goals of this evaluation are twofold: 1) compare the
running times of the verified with an unverified implementation and 2) evaluate
whether convergence still generally occurs in the floating-point setting. We argue
that 1) is important to demonstrate since verified implementations tend to be
orders of magnitude slower than unverified ones [57]. Moreover, 2) is important
because our verified implementation does not formally guarantee convergence.

For runtime speed, we compare our verified implementation to the manual
implementation in mcsta. There are two (unverified) variants of this algorithm in
mcsta: one with standard rounding (Modest implementation) and a variant with
safe rounding [31] (Safe implementation). The latter uses AVX512 instructions
for safe rounding, similar to our verified LLVM implementation. We set the
convergence threshold to ε = 10−6, which is the standard in mcsta.

We use all DTMC, MDP and PTA models of the QVBS of QCOMP [18]
with between 106 and 108 states that need at least two iterations to converge

18 ANONYMOUS

≤ 0.250.5 1 2 4 8 16 32

≤ 0.25

0.5

1

2

4

8

16

32

≥ 64

≥ 64

Modest time (s)

V
er

ifi
ed

ti
m

e
(s

)

DTMC MDP PTA

≤ 0.250.5 1 2 4 8 16 32

≤ 0.25

0.5

1

2

4

8

16

32

≥ 64

≥ 64

Safe time (s)

V
er

ifi
ed

ti
m

e
(s

)

Fig. 5. Comparison of runtime to complete the Interval Iteration routine

to ε. We consider both minimal and maximal reachability probabilities for our
benchmarks. In total, this yields a benchmark set of 49 benchmark instances.
We ran all benchmarks on an Intel i9-11900K at 3.5GHz with 128GB of RAM.

The plot on the left in Fig. 5 compares the Verified implementation to the
Modest implementation, while the plot on the right compares to the Safe im-
plementation. Our data shows that the performance is consistent between the
different implementations. The raw data (omitted here) shows that the Safe and
Verified implementation perform the same number of iterations on each instance
and converge up to ε. We conclude that the differences between implementations
are minimal. In summary, we note that 1) we have replaced an unverified imple-
mentation with a verified one at no or negligible cost and 2) that our algorithm
still converges for practical use-cases.

7 Conclusion

We formally verified the interval iteration algorithm in Isabelle/HOL. Our de-
velopments prove that the algorithm computes lower and upper bounds for the
reachability probabilities (soundness) and converges to a single fixpoint (com-
pleteness). Furthermore, we show that soundness is preserved if we implement
the algorithm using floating-point arithmetic with safe rounding. For this pur-
pose, we used a principled refinement approach. We exploited the parametricity
principle of the IRF by consistently rounding our floating-point values in one
direction. To make this practical, we equipped the sepref tool with reasoning
infrastructure for floating-point numbers to generate an LLVM program. All our
proofs culminate in a single statement, presented as a Hoare triple, leaving no
gaps in the link between the specification and the implementation in LLVM.

Finally, we extract verified LLVM code from our formalization and embed
it in the mcsta model checker of the Modest toolset. We experimentally verify
that our implementation converges in practice and is competitive with manually

Formally Verified Floating-Point Implementation of Interval Iteration 19

implemented unverified counterparts. This is an important step towards a fully
verified probabilistic model checking pipeline.

We also present our approach as an alternative to the bottom-up approach of
building a verified model checker from scratch. With our top-down approach, the
full functionality of the model checker is available to the user, possibly in cross-
usage with verified components. Verified components are integrated with the
model checker incrementally as drop-in replacements for unverified components,
designed with competitive performance in mind.

In a next step, we plan to build a complete verified II backend of mcsta.
The missing part is an efficient verified implementation of the transformations
to reduced MDPs. For this purpose, we aim to build on recent advancements
that provide a verified and efficiently executable MEC decomposition algorithm
in Isabelle/HOL [37].

References

1. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive verifi-
cation of floating-point java programs in key. In: Groote, J.F., Larsen, K.G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 27th In-
ternational Conference, TACAS 2021, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxem-
bourg, March 27 - April 1, 2021, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 12652, pp. 242–261. Springer (2021). https://doi.org/10.1007/
978-3-030-72013-1_13, https://doi.org/10.1007/978-3-030-72013-1_13

2. Abdulaziz, M., Madlener, C.: A Formal Analysis of RANKING. In: The 14th
Conference on Interactive Theorem Proving (ITP) (2023). https://doi.org/10.
48550/arXiv.2302.13747

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice, Lec-
ture Notes in Computer Science, vol. 10001. Springer (2016). https://doi.org/
10.1007/978-3-319-49812-6, http://dx.doi.org/10.1007/978-3-319-49812-6

4. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University, USA (1997), https://searchworks.stanford.edu/view/3910936

5. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci-
ence of Computer Programming (Jun 2009). https://doi.org/10.1016/j.scico.
2007.09.002

6. Baier, C.: Probabilistic model checking. In: Esparza, J., Grumberg, O., Sickert,
S. (eds.) Dependable Software Systems Engineering, NATO Science for Peace and
Security Series – D: Information and Communication Security, vol. 45, pp. 1–23.
IOS Press (2016). https://doi.org/10.3233/978-1-61499-627-9-1

7. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Hand-
book of Model Checking, pp. 963–999. Springer (2018). https://doi.org/10.
1007/978-3-319-10575-8_28

8. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010). https://
doi.org/10.1145/1810891.1810912

9. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)

https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.48550/arXiv.2302.13747
https://doi.org/10.48550/arXiv.2302.13747
https://doi.org/10.48550/arXiv.2302.13747
https://doi.org/10.48550/arXiv.2302.13747
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
https://searchworks.stanford.edu/view/3910936
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.3233/978-1-61499-627-9-1
https://doi.org/10.3233/978-1-61499-627-9-1
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1145/1810891.1810912
https://doi.org/10.1145/1810891.1810912
https://doi.org/10.1145/1810891.1810912
https://doi.org/10.1145/1810891.1810912

20 ANONYMOUS

10. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the re-
liability of your model checker: Interval iteration for Markov decision processes.
In: Majumdar, R., Kuncak, V. (eds.) 29th International Conference on Computer
Aided Verification (CAV). Lecture Notes in Computer Science, vol. 10426, pp.
160–180. Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_8

11. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: TYPES. Lecture
Notes in Computer Science, vol. 3085, pp. 34–50. Springer (2003)

12. Barrett, G.: Formal methods applied to a floating-point number system. IEEE
Transactions on Software Engineering (May 1989). https://doi.org/10.1109/
32.24710

13. Bellman, R.: A Markovian decision process. Journal of Mathematics and Mechanics
6(5), 679–684 (1957)

14. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

15. Boldo, S., Melquiond, G.: Flocq: A Unified Library for Proving Floating-Point
Algorithms in Coq. In: 2011 IEEE 20th Symposium on Computer Arithmetic (Jul
2011). https://doi.org/10.1109/ARITH.2011.40

16. Boldo, S., Munoz, C.: A high-level formalization of floating-point number in PVS.
Tech. rep. (2006)

17. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 10206, pp.
151–168 (2017). https://doi.org/10.1007/978-3-662-54580-5_9

18. Budde, C.E., Hartmanns, A., Klauck, M., Kretínský, J., Parker, D., Quatmann,
T., Turrini, A., Zhang, Z.: On correctness, precision, and performance in quanti-
tative verification (QComp 2020 competition report). In: Margaria, T., Steffen, B.
(eds.) 9th International Symposium on Leveraging Applications of Formal Meth-
ods (ISoLA). Lecture Notes in Computer Science, vol. 12479, pp. 216–241. Springer
(2020). https://doi.org/10.1007/978-3-030-83723-5_15

19. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
The astreé analyzer. In: Sagiv, S. (ed.) Programming Languages and Systems, 14th
European Symposium on Programming, ESOP 2005, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3444,
pp. 21–30. Springer (2005). https://doi.org/10.1007/978-3-540-31987-0_3,
https://doi.org/10.1007/978-3-540-31987-0_3

20. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis
of probabilistic systems by successive refinements. In: de Alfaro, L., Gilmore, S.
(eds.) Joint International Workshop on Process Algebra and Probabilistic Meth-
ods, Performance Modeling and Verification (PAPM-PROBMIV). Lecture Notes
in Computer Science, vol. 2165, pp. 39–56. Springer (2001). https://doi.org/10.
1007/3-540-44804-7_3

21. De Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implemen-
tation of an elementary function using Gappa. IEEE Transactions on Computers
(2010). https://doi.org/10.1109/TC.2010.128

22. Eberl, M., Haslbeck, M.W., Nipkow, T.: Verified Analysis of Random Bi-
nary Tree Structures. J. Autom. Reason. (2020). https://doi.org/10.1007/
S10817-020-09545-0

https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1109/32.24710
https://doi.org/10.1109/32.24710
https://doi.org/10.1109/32.24710
https://doi.org/10.1109/32.24710
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1007/S10817-020-09545-0
https://doi.org/10.1007/S10817-020-09545-0
https://doi.org/10.1007/S10817-020-09545-0
https://doi.org/10.1007/S10817-020-09545-0

Formally Verified Floating-Point Implementation of Interval Iteration 21

23. Eberl, M., Hölzl, J., Nipkow, T.: A Verified Compiler for Probability Density Func-
tions. In: Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings (2015). https://doi.org/10.1007/978-3-662-46669-8_4

24. Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of
Topology and Analysis (1982). https://doi.org/10.1007/BFb0092872

25. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D.A. (eds.) Verification, Model Checking, and Abstract Interpretation
- 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-
25, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6538, pp. 232–
247. Springer (2011). https://doi.org/10.1007/978-3-642-18275-4_17, https:
//doi.org/10.1007/978-3-642-18275-4_17

26. Haddad, S., Monmege, B.: Reachability in MDPs: Refining convergence of value it-
eration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) 8th International Workshop
on Reachability Problems (RP). Lecture Notes in Computer Science, vol. 8762, pp.
125–137. Springer (2014). https://doi.org/10.1007/978-3-319-11439-2_10

27. Haddad, S., Monmege, B.: Interval iteration algorithm for mdps and imdps. Theor.
Comput. Sci. 735, 111–131 (2018). https://doi.org/10.1016/J.TCS.2016.12.
003

28. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/S10703-012-0167-Z

29. Harrison, J.: Formal verification at Intel. In: 18th Annual IEEE Symposium of
Logic in Computer Science, 2003. Proceedings. (Jun 2003). https://doi.org/10.
1109/LICS.2003.1210044

30. Harrison, J.: A Machine-Checked Theory of Floating Point Arithmetic. In:
Theorem Proving in Higher Order Logics (1999). https://doi.org/10.1007/
3-540-48256-3_9

31. Hartmanns, A.: Correct probabilistic model checking with floating-point arith-
metic. In: TACAS (2). Lecture Notes in Computer Science, vol. 13244, pp. 41–59.
Springer (2022)

32. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 8413, pp.
593–598. Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_51

33. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide
to MDP model checking algorithms. In: Sankaranarayanan, S., Sharygina, N. (eds.)
29th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 13993, pp.
469–488. Springer (2023). https://doi.org/10.1007/978-3-031-30823-9_24

34. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) 32nd International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 12225, pp. 488–511. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8_26

35. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantita-
tive verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) 25th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 11427, pp. 344–350. Springer
(2019). https://doi.org/10.1007/978-3-030-17462-0_20

https://doi.org/10.1007/978-3-662-46669-8_4
https://doi.org/10.1007/978-3-662-46669-8_4
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1016/J.TCS.2016.12.003
https://doi.org/10.1016/J.TCS.2016.12.003
https://doi.org/10.1016/J.TCS.2016.12.003
https://doi.org/10.1016/J.TCS.2016.12.003
https://doi.org/10.1007/S10703-012-0167-Z
https://doi.org/10.1007/S10703-012-0167-Z
https://doi.org/10.1109/LICS.2003.1210044
https://doi.org/10.1109/LICS.2003.1210044
https://doi.org/10.1109/LICS.2003.1210044
https://doi.org/10.1109/LICS.2003.1210044
https://doi.org/10.1007/3-540-48256-3_9
https://doi.org/10.1007/3-540-48256-3_9
https://doi.org/10.1007/3-540-48256-3_9
https://doi.org/10.1007/3-540-48256-3_9
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20

22 ANONYMOUS

36. Hartmanns, A., Kohlen, B., Lammich, P.: Fast verified sccs for probabilistic model
checking. In: ATVA (1). Lecture Notes in Computer Science, vol. 14215, pp. 181–
202. Springer (2023)

37. Hartmanns, A., Kohlen, B., Lammich, P.: Efficient formally verified maximal end
component decomposition for mdps. In: FM (1). Lecture Notes in Computer Sci-
ence, vol. 14933, pp. 206–225. Springer (2024)

38. Hölzl, J.: Markov chains and markov decision processes in isabelle/hol. J. Autom.
Reason. 59(3), 345–387 (2017). https://doi.org/10.1007/S10817-016-9401-5

39. Hölzl, J., Nipkow, T.: Markov models. Arch. Formal Proofs 2012 (2012), https:
//www.isa-afp.org/entries/Markov_Models.shtml

40. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in
isabelle/hol. In: Beringer, L., Felty, A.P. (eds.) Verification, Model Checking,
and Abstract Interpretation - 12th International Conference, VMCAI 2011,
Austin, TX, USA, January 23-25, 2011. Proceedings. Lecture Notes in Com-
puter Science, vol. 7406, pp. 377–392. Springer (2012). https://doi.org/10.1007/
978-3-642-32347-8_26, https://doi.org/10.1007/978-3-642-32347-8_26

41. Kamali, M., Katoen, J.P.: Probabilistic model checking of AODV. In: Gribaudo,
M., Jansen, D.N., Remke, A. (eds.) 17th International Conference on the Quantita-
tive Evaluation of Systems (QEST). Lecture Notes in Computer Science, vol. 12289,
pp. 54–73. Springer (2020). https://doi.org/10.1007/978-3-030-59854-9_6

42. Kaminski, B.L.: Advanced Weakest Precondition Calculi for Probabilistic Pro-
grams. Ph.D. thesis, RWTH Aachen University, Germany (2019), http://
publications.rwth-aachen.de/record/755408

43. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
c: A software analysis perspective. Formal Aspects Comput. 27(3), 573–
609 (2015). https://doi.org/10.1007/S00165-014-0326-7, https://doi.org/
10.1007/s00165-014-0326-7

44. Kosmatov, N., Prevosto, V., Signoles, J.: Guide to Software Verification with
Frama-C. Springer (2024)

45. Lammich, P.: Generating verified LLVM from isabelle/hol. In: Harrison, J.,
O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive The-
orem Proving (ITP). LIPIcs, vol. 141, pp. 22:1–22:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPICS.ITP.2019.22

46. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
hopcroft’s algorithm. In: Beringer, L., Felty, A.P. (eds.) 3rd International Con-
ference on Interactive Theorem Proving (ITP). Lecture Notes in Computer
Science, vol. 7406, pp. 166–182. Springer (2012). https://doi.org/10.1007/
978-3-642-32347-8_12

47. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis and transformation. p. 75–88. San Jose, CA, USA (Mar 2004)

48. Magron, V., Constantinides, G.A., Donaldson, A.F.: Certified roundoff error
bounds using semidefinite programming. ACM Trans. Math. Softw. 43(4), 34:1–
34:31 (2017). https://doi.org/10.1145/3015465, https://doi.org/10.1145/
3015465

49. Miner, P.S.: Defining the IEEE-854 floating-point standard in PVS. Tech. rep.
(1995)

50. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.A.: Automatic Estimation of Verified
Floating-Point Round-Off Errors via Static Analysis. In: Computer Safety, Relia-
bility, and Security (2017). https://doi.org/10.1007/978-3-319-66266-4_14

51. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

https://doi.org/10.1007/S10817-016-9401-5
https://doi.org/10.1007/S10817-016-9401-5
https://www.isa-afp.org/entries/Markov_Models.shtml
https://www.isa-afp.org/entries/Markov_Models.shtml
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1007/978-3-030-59854-9_6
https://doi.org/10.1007/978-3-030-59854-9_6
http://publications.rwth-aachen.de/record/755408
http://publications.rwth-aachen.de/record/755408
https://doi.org/10.1007/S00165-014-0326-7
https://doi.org/10.1007/S00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.4230/LIPICS.ITP.2019.22
https://doi.org/10.4230/LIPICS.ITP.2019.22
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1145/3015465
https://doi.org/10.1145/3015465
https://doi.org/10.1145/3015465
https://doi.org/10.1145/3015465
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-319-66266-4_14

Formally Verified Floating-Point Implementation of Interval Iteration 23

52. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.
org/10.1002/9780470316887, https://doi.org/10.1002/9780470316887

53. Quatmann, T., Katoen, J.P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) 30th International Conference on Computer Aided Verifica-
tion (CAV). Lecture Notes in Computer Science, vol. 10981, pp. 643–661. Springer
(2018). https://doi.org/10.1007/978-3-319-96145-3_37

54. Roberts, R., Lewis, B., Hartmanns, A., Basu, P., Roy, S., Chakraborty, K., Zhang,
Z.: Probabilistic verification for reliability of a two-by-two network-on-chip sys-
tem. In: Lluch-Lafuente, A., Mavridou, A. (eds.) 26th International Conference
on Formal Methods for Industrial Critical Systems (FMICS). Lecture Notes in
Computer Science, vol. 12863, pp. 232–248. Springer (2021). https://doi.org/
10.1007/978-3-030-85248-1_16

55. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance anal-
ysis and optimization via statistical model checking – evaluating a train pneu-
matic compressor. In: Agha, G., Houdt, B.V. (eds.) 13th International Confer-
ence on the Quantitative Evaluation of Systems (QEST). Lecture Notes in Com-
puter Science, vol. 9826, pp. 331–347. Springer (2016). https://doi.org/10.1007/
978-3-319-43425-4_22

56. Ruijters, E., Guck, D., van Noort, M., Stoelinga, M.: Reliability-centered mainte-
nance of the electrically insulated railway joint via fault tree analysis: A practical
experience report. In: 46th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN). pp. 662–669. IEEE Computer Society
(2016). https://doi.org/10.1109/DSN.2016.67

57. Schäffeler, M., Abdulaziz, M.: Formally verified solution methods for markov de-
cision processes. In: AAAI. pp. 15073–15081. AAAI Press (2023)

58. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamaric, Z., Gopalakr-
ishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic
taylor expansions. ACM Trans. Program. Lang. Syst. 41(1), 2:1–2:39 (2019).
https://doi.org/10.1145/3230733, https://doi.org/10.1145/3230733

59. Sutton, R.S., Barto, A.G.: Reinforcement learning – an introduction. Adaptive
computation and machine learning, MIT Press (1998)

60. Tassarotti, J., Harper, R.: A separation logic for concurrent randomized programs.
Proc. ACM Program. Lang. (2019). https://doi.org/10.1145/3290377

61. Titolo, L., Moscato, M., Feliu, M.A., Masci, P., Muñoz, C.A.: Rigorous Floating-
Point Round-Off Error Analysis in PRECiSA 4.0. In: Formal Methods (2025).
https://doi.org/10.1007/978-3-031-71177-0_2

62. Vajjha, K., Shinnar, A., Trager, B.M., Pestun, V., Fulton, N.: CertRL: Formalizing
convergence proofs for value and policy iteration in Coq. In: The 10th International
Conference on Certified Programs and Proofs (CPP) (2021). https://doi.org/10.
1145/3437992.3439927

63. Wimmer, R., Kortus, A., Herbstritt, M., Becker, B.: Probabilistic model checking
and reliability of results. In: Straube, B., Drutarovský, M., Renovell, M., Gramata,
P., Fischerová, M. (eds.) 11th IEEE Workshop on Design & Diagnostics of Elec-
tronic Circuits & Systems (DDECS). pp. 207–212. IEEE Computer Society (2008).
https://doi.org/10.1109/DDECS.2008.4538787

64. Yu, L.: A formal model of IEEE floating point arithmetic. Arch. Formal Proofs
2013 (2013), https://www.isa-afp.org/entries/IEEE_Floating_Point.shtml

https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-030-85248-1_16
https://doi.org/10.1007/978-3-030-85248-1_16
https://doi.org/10.1007/978-3-030-85248-1_16
https://doi.org/10.1007/978-3-030-85248-1_16
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1145/3230733
https://doi.org/10.1145/3230733
https://doi.org/10.1145/3230733
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
https://doi.org/10.1007/978-3-031-71177-0_2
https://doi.org/10.1007/978-3-031-71177-0_2
https://doi.org/10.1145/3437992.3439927
https://doi.org/10.1145/3437992.3439927
https://doi.org/10.1145/3437992.3439927
https://doi.org/10.1145/3437992.3439927
https://doi.org/10.1109/DDECS.2008.4538787
https://doi.org/10.1109/DDECS.2008.4538787
https://www.isa-afp.org/entries/IEEE_Floating_Point.shtml

	A Formally Verified IEEE 754 Floating-Point Implementation of Interval Iteration for MDPs

