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Abstract
We present a formalisation of the correctness of algorithms to solve minimum-cost flow problems, in
Isabelle/HOL. Two of the algorithms are based on the technique of scaling, most notably Orlin’s
algorithm, which has the fastest running time for the problem of minimum-cost flow. Our work
uncovered a number of complications in the proofs of the results we formalised, the resolution of
which required significant effort. Our work is also the first to formally consider the problem of
minimum-cost flows and, more generally, scaling algorithms.
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1 Introduction

Flow networks are some the most important structures in combinatorial optimisation and
computer science. In addition to many immediate practical applications, flow networks and
problems defined on them have many connections to other important problems in computer
science, most notably, the connection between maximum weight bipartite matching and
the problem of maximum flow. Because of this practical and theoretical relevance, network
flows have been intensely studied, leading to many important milestone results in computer
science, like the Edmonds-Karp algorithm [7] for computing the maximum flow between two
vertices in a network. Furthermore, flow algorithms were some of the earliest algorithms
to be considered for formal analysis. The first such effort was in 2005 by Lee in the prover
Mizar [19], where the Ford-Fulkerson algorithm for maximum flow was verified. Later on,
Lammich and Serfidgar [17] formally analysed the same algorithm and also the Edmonds-
Karp algorithm [7], which is one of its polynomial worst-case running time refinements, in
Isabelle/HOL.

In this work we formalise in Isabelle/HOL the correctness of a number of algorithms for
the minimum-cost flow problem, which is another important computational problem defined
on flow networks. Given a flow network, costs per unit flow associated with every edge, and
a desired flow value between a number of sources and a number of sinks, a solution to this
problem is a flow achieving that value, but for the minimum-cost. This problem can be seen
as a generalisation of maximum flow, and thus many problems can be reduced to it, e.g.
shortest path, maximum flow, and maximum weight bipartite matching.

More specifically, we formalise 1. the problem of minimum-cost flows, 2. the main
optimality criterion used to justify most algorithms for minimum-cost flow, and 3. the
correctness of three algorithms to compute minimum-cost flows: a. successive shortest paths,
which has an exponential worst-case running time, b. capacity scaling, which has a polynomial
worst-case running time, and c. Orlin’s algorithm, which has a strongly polynomial worst-case
running time. A noteworthy outcome of our work is that it uncovered gaps in the correctness
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23:2 A Formal Analysis of Capacity Scaling Algorithms for Minimum Cost Flows

proof of Orlin’s algorithm in most textbook expositions. For instance, an important property,
namely, optimality preservation, has a gap in all combinatorial proofs of which we are aware.
We cover that gap (Lemma 3) using an involved graphical argument, which was at least
15% of our effort. The presence of this gap and the complexity of proving Theorem 1 is yet
another example of complications uncovered in graphical and geometric arguments when
formalising them, something which was documented by prior authors [1, 24, 13, 3].

2 Background and Definitions

A directed graph is defined as a set of ordered pairs. A maximal set of vertices C, where
there is a path between x and y or y and x for all x, y ∈ C, is a connected component. A
representative function r : V → V maps all vertices within a component C to the same vertex
rC ∈ C. Consequently, we call r(x) the representative of component C for a vertex x ∈ C.

A flow network consists of a directed graph over edges E and vertices V, and a capacity
function u : E → R+

0 ∪ {∞}. If u(e) = ∞ for all e ∈ E , the network is uncapacitated. The
goal is to find a function, i.e. a flow f : E → R+

0 satisfying f(e) ≤ u(e) for any edge e. An
edge is saturated if its flow f(e) equals its capacity u(e), otherwise the edge is unsaturated.
The first vertex of an edge is called the source and the second one is the target of the edge,
respectively. For a specific vertex v, the set of all edges entering or leaving this vertex is
denoted by δ−(v) or δ+(v), respectively. The excess of a flow f at the vertex v, exf (v), is
the difference between ingoing and outgoing flow exf (v) def=

∑
e∈δ−(v)

f(e)−
∑

e∈δ+(v)
f(e).

Analogously to single vertices, the set of entering and leaving edges of a set of vertices X

is denoted by ∆+(X) and ∆−(X), respectively. An ordered bipartition (X,V \X) of the
graph’s vertices is called a cut. The (reverse) capacity of a cut X is the accumulated edge
capacity of all (ingoing) outgoing edges cap(X) def=

∑
e∈∆+(X)

u(e) (acap(X) def=
∑

e∈∆−(X)
u(e)).

A minimum cost flow problem consists of two further ingredients. We introduce balances
b : V → R denoting the amount of flow that should be caught or emitted at every vertex.
A flow satisfying balance and capacity constraints is called valid. In addition, there is
a function c : E → R telling us about the costs of sending one unit of flow through an
edge. A flow’s f total costs c(f) are c(f) =

∑
e∈E

f(e) · c(e). The set of feasible flows is

{f | ∀v ∈ V. − ex f (v) = b(v) ∧ ∀e ∈ E . f(e) ≤ u(e)}. We aim to find a minimum cost flow
which is a feasible flow of least total costs. A network without cycles of negative total costs
is called weight-conservative.

Given a flow f , we define the residual network: For any edge (x, y) ∈ E we have two
residual edges, namely, the forward F (x, y) and backward B (y, x) edge pointing from x to y

and from y to x, respectively. These form a pair of reverse edges. The reverse of a residual
edge e is written as ←e . We define the residual cost c of a residual edge as c(F (x, y)) = c(x, y)notation of e

reverse can
perhaps be
deleted.

and c(B (y, x)) = −c(x, y), respectively. For a flow f , we define the residual capacities uf .
On forward edges, this is the difference between the actual capacity and the flow currently
sent through this edge: uf (F (x, y)) = u(x, y)− f(x, y). The capacity of a backward edge
equals the flow assigned to the original edge: uf (B (y, x)) = f(x, y).

The residual capacity uf (p) of a path p is defined as uf (p) = min{uf (e) . e ∈ p}. The
residual costs c(p) are obtained by accumlating residual costs for the edges contained in p.

Note that the residual network can be considered a multi graph that has at most two
copies of the same edge, e.g. F (x, y) and B(x, y) (see the residual network in Fig. 1b).
Intuitively, a forward edge of the residual network indicates how much more could be added
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(b) Original Residual Graph
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(d) Residual Graph after Augmentation

Figure 1 Flows, (residual) capacities and (residual) costs are black, green and red, respectively.
Forward edges are blue, backward edges purple.

to the flow and a backward edge indicates how much could be removed from the flow.

▶ Example 1. Fig. 1a shows a flow network, where every edge is labelled by a flow, capacity,
and a cost per unit flow. The colouring convention from the caption applies. Fig. 1b shows
the residual network for the network in Fig. 1a. The residual network has, for every flow
network edge (x, y), two edges: one is the forward edge F (x, y), a copy of the original edge,
and the second is the backward edge B(y, x), going in the opposite direction. Thus, forward
edges of the residual network are labelled by the residual capacity, indicating how much more
flow can still go through the network. Backward edges are also labelled by a capacity but,
as stated earlier, the capacity is the flow going through the original edge, and the costs are
negative, indicating that removing from the flow saves cost.

3 Towards a simple Algorithm

Augmentation is a principal technique in combinatorial optimisation in which a candidate
solution is incrementally improved until an optimal solution is found. In the context of flows,
augmenting (along) a forward edge by a positive real γ means to increase the flow assigned
to the original edge by γ. Augmenting along a backward edge is done by decreasing the flow
value of the original edge by γ. The augmentation along a path is done by augmenting along
each edge contained. We call a path of residual edges along which the residual capacities
are strictly positive an augmenting path. Closed augmenting paths p with c(p) < 0 are
augmenting cycles.

▶ Example 2. The result of augmenting our example flow from Fig. 1b is shown in Fig. 1c,
where the flow is augmented along the edges (u, v) and (v, u) by 2. The resulting new residual
network is shown in Fig. 1d, showing the change in capacities in forward and backward edges.

For this and all subsequent sections, we fix a weight-conservative flow network G =
(E ,V, u, c). Unless said otherwise, costs and capacities refer to this network. The balances
b are kept generic. Algorithm 1 is one of the most basic minimum cost flow algorithms.
successive-shortest-path(G, b) repeatedly selects a source s with positive balance, a target
t with negative balance and a minimum cost augmenting path P connecting s to t, i.e. a

CVIT 2016



23:4 A Formal Analysis of Capacity Scaling Algorithms for Minimum Cost Flows

Algorithm 1 successive-shortest-path(E , V, u, c, b)

initialise b′ ← b and f ← 0;
while True do

if ∀ v ∈ V. b′(v) = 0 then
return f as optimum flow;

else
take some s with b′(s) > 0;
if ∃ t reachable from s ∧ b′(t) < 0 then

take such a t and
a mincost augpath P from s to t;
γ = min{b(s),−b(t), uf (P )} ;
augment γ along P ;
b′(s)← b′(s)− γ; b′(t)← b′(t) + γ;

else return infeasible;

Figure 2 Eliminating FBPs: Mem-
bers of an F BP belong either to the same
(left) or to two different cycles (right).
When the F BP is dropped on the left,
we obtain two new cycles. On the right,
F BP deletion results in a single new cycle.
Disjointness is preserved.

minimum cost path in the residual network connecting s to t. Following that, it sends as
much flow as possible, i.e. as much as the minimum capacity of any forward residual edge or
as the balances of s and/or t allow, from s to t along P . The balances at s and t are lowered
and increased by the same amount, respectively. This is done until all balances reach zero or
infeasibility can be inferred from the absence of an augmenting path.

Conceptually, the algorithm is defined on program states consisting of variables E , V , u, c,
balances b, remaining balances b′ and the flow f . Invariants are predicates defined on states.
If not all variables are relevant to an invariant, we say that only the involved variables satisfy
the invariant.

Correctness of Algorithm 1. To prove that the algorithm is correct, we show that the
following invariants hold for the states encountered during the main loop of successive-
shortest-path(G, b) (Algorithm 1):

1. The flow f is a minimum cost flow for the balance b− b′1.
2. If capacities u and balances b are integral, then b′(v) and f(e) are integral for any vertex

x ∈ V and e ∈ E , respectively.
3. The sum of b′ over all vertices v is zero:

∑
v∈V

b′(x) = 0.

Proving Invariant 1 was the most demanding and we dedicate most of this section to
it. The other two invariants easily follow from the algorithm’s structure. Correctness of all
non-trivial algorithms for minimum cost flows depends on the following optimality criterion:

▶ Theorem 1 (Optimality Criterion [14]). A flow f valid for balance b is optimum iff there is
no augmenting cycle w.r.t f .

Proof sketch. An augmenting cycle is a possibility to decrease costs while still meeting the
balance constraints which gives one direction.

For the other direction, assume a valid flow f ′ with c(f ′) < c(f). We define the
flow g in the residual graph as g(F (x, y)) = max{0, f ′(x, y) − f(x, y)} and g(B(y, x)) =
max{0, f(x, y)− f ′(x, y)}. It can be shown that g is a flow in the residual graph with zero

1 For any v, this is defined as (b − b′)(v) = b(v) − b′(v).
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excess for every vertex, a so-called circulation. Moreover, c(g) = c(f ′)− c(f) and any residual
edge e with uf (e) = 0 has g(e) = 0. The circulation g can be decomposed, i.e. there is a set of
cycles C and weights w : C → R+ where any residual edge e has g(e) =

∑
C∈C∧e∈C

w(C). Since

0 > c(f) − c(f) = c(g) =
∑

C∈C
w(C) · c(C), there has to be a cycle C ∈ C where c(C) < 0.

uf (C) must be positive making this an augmenting cycle w.r.t. f . ■

Flow-decomposition [12, 8] as used in the proof of Theorem 1 is a fundamental technique
in reasoning about flows. Now, pairs of residual edges where one is the reversed one of the
other are called forward-backward-pairs (FBP), e.g. F (x, y) and B(y, x). They are involved
in lemmas one can use to prove preservation of the optimality invariant. Subsequently,
disjointness of paths and cycles means their edge-disjointness.

▶ Lemma 2. Deleting all FBP s from a set of disjoint cycles results yields another set of
disjoint cycles.

Proof Sketch. Proof by induction on the number of FBP s. See cases from Fig. 2. ■

▶ Lemma 3. Assume an s-t-path P and some cycles C where every FBP is between the path
and a cycle, all items disjoint with one another. Deleting all FBP s results in an s-t-path
and some cycles, again all disjoint.

Proof Sketch. Proof by induction on the number of FBP s: Fix an arbitrary FBP which
must be between the current path P and some cycle C ∈ C. Now, we look at two cases.
Simple Case (Single FBP). It might be that this is the only FBP between P and C. By
dropping it, we simply get a new s-t-path P ′ and may eliminate one cycle (Simple Case in
Fig. 3). Still, there are no FBP s among or between cycles and the induction hypothesis can
be applied immediately to P ′ and C \ {C}.
Case (Several FBPs). We now consider the first and last FBP s between C and P according
to the order given by P . By deleting those, we obtain a new s-t-path P ′ and a new cycle
C ′ (Fig. 3a). Due to eliminating the first and last FBP , P ′ cannot have any FBP s within
itself. But the set of cycles D = C \ {C} ∪ {C ′} (Fig. 3b) may now contain FBP s, although
they are still disjoint with one another. By Lemma 2, the FBP s can be deleted resulting in
a set of disjoint cycles. This yields the path P ′ and cycles C′ from Fig. 3c. The number of
FBP s has decreased, the substructures are disjoint and any FBP is between P ′ and a cycle
in C′ to which the induction hypothesis may be applied. ■

The following theorem implies the preservation of Invariant 1. This is perhaps not surprising
since we always send the balance/flow along the cheapest augmenting paths.

▶ Theorem 4 (Optimality Preservation [14]). Let f be a minimum cost flow for balances b.
Take an s-t-path P of minimum residual costs and γ ≤ uf (P ). If we augment f by γ along P

then the result is still optimum for modified balances b′ where b′(s) = b(s) + γ, b′(t) = b(t)−γ

and b′(v) = b(v) for any other v.

Proof Sketch. P is vertex-disjoint since any cycle in P would have positive costs (Theorem 1)
contradicting the optimality of P . Assume the flow f ′ after the augmentation were not
optimum. By Theorem 1, there exists an augmenting cycle C. Wlog. C is vertex-disjoint:
Otherwise split C into vertex-disjoint cycles of which one has negative residual costs.

Due to vertex-disjointness, neither P nor C can contain any FBP s. We can therefore
apply Lemma 3 to P and C yielding another s-t-path P ′ and a set of cycles C. Their edges

CVIT 2016
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s t

C

Simple case: Exactly one FBP between the s-t-path P and
a cycle C. Deleting this simply forms a new s-t-path. Other cycles
(grey) remain unaltered. Disjointness is preserved.

s t
p1 p2 p3

Complex Case (a): At least two FBPs between path and
cycle. The path P is composed out of p1, p2, p3 and the two red
edges. The cycle consists of the blue edges, the green path and the
pink path. When dropping the two fixed F BP s, the new path P ′ is
formed out of p1, p3 and the pink path. A new cycle C′ arises from
p2 and the green path. Uninvolved cycles are grey.

exactly one F BP

We have the s-t-path P and
the cycle C with FBP s
between them. How many
of those FBPs do exist?

two or more F BP s,
proceed from

3a over 3b to 3c.

Complex Case (b): Although all mutually
disjoint, the new set of cycles D might con-
tain F BP s, need for elimination according to
Lemma 2

s t

Complex Case (c): After eliminating the F BP s from
the set of cycles D, we have a set of disjoint cycles C′

without any F BP s. P ′ is still defined as in Fig. 3a.

Figure 3 Elimination of Forward-Backward-Pairs in the proof of Lemma 3

have positive residual capacity w.r.t. f : For any e ∈ P ′∪
⋃
C we have uf (e) > 0 or uf ′(e) > 0.

If only the latter holds, then e ∈ C and ←e ∈ P which is an FBP . However, this would have
been deleted. Since deleting FBPs preserves costs, we have c(P ′) + c(C) = c(P ) + c(C).
Because c(P ′) ≥ c(P ) (optimality of P ) and c(C) < 0, there must be D ∈ C with c(D) < 0.
This is an augmenting cycle w.r.t. f contradicting Theorem 1. ■

Lemma 3 is a gap, which we cover with the construction above, in all published com-
binatorial proofs we are aware of, including the proof by Korte and Vygen [14]. The only
other complete proof of Theorem 4 of which we are aware is a non-combinatorial proof by
Orlin [22, 4], in which he uses advanced LP-theory.

▶ Theorem 5 (Correctness of Algorithm 1). Assume the sum of balances b over V is zero. An
execution of sucessive-shortest-path(G, b) terminates, decides about the existence of a valid
flow and returns one in case of existence.

Proof Sketch. Due to weight conservativity, the zero flow is optimum for the zero balance
making the optimality invariant (Invariant 1) initially true. Its preservation follows from
Theorem 4. Invariants 3 and 2 also hold initially. Their preservation can be seen from the
algorithm.

As the γ used for the augmentations will be a natural number, the sum of the absolute
values of balances will decrease yielding a termination measure.
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It remains to show that there is no valid flow if the procedure returns infeasible, a case
for which we need some further auxiliary results. We note that f is a valid flow w.r.t. b− b′.
We call the set of vertices X reachable from v in the residual graph its residual cut, denoted
by Rescutf (v). It can be seen that any leaving edge must be saturated and any entering
edge’s flow is zero. The so-called Flow-Value Lemma says for any cut X, any b and any flow
f valid w.r.t. b:∑

v∈X

b(v) =
∑

e∈∆+(X)

f(e)−
∑

e∈∆−(X)

f(e)

Those two results yield for any b and any flow f valid w.r.t. b:∑
x∈Rescutf (v)

b(x) =
∑

e∈∆+(Rescutf (v))

f(e) = cap(Rescutf (v)) (Corollary 6)

We have 0 ≤
∑

e∈∆+(X)
f(e) ≤ cap(X) and 0 ≤

∑
e∈∆−(X)

f(e) ≤ acap(X) for any valid flow f

and cut X. If there is a valid flow, this implies together with the Flow-Value Lemma:

−acap(X) ≤
∑
v∈X

b(v) ≤ cap(X) (Corollary 7)

The sum of balances is the amount of flow to be sent to or removed from the cut. This has
to be within the bounds given by the capacities in both directions which is the intuition
behind Corollary 7 . From the algorithm’s control flow we can infer that there must be an s

with b′(s) > 0 without a reachable t where b′(t) < 0, i.e. any x in the rescut has a b′(x) ≥ 0.
We obtain a contradiction in case there exists a flow f ′ valid w.r.t. b.∑

x∈Rescutf (s)

b(x) ≤ cap(Rescutf (s)) (f ′ is valid flow and Corollary 7)

=
∑

x∈Rescutf (s)

(b− b′)(x) (Corollary 6 for f and b− b′)

<
∑

x∈Rescutf (s)

b(x)
■

Formalisation. We represent loops as recursive functions. The non-trivial termination
argument requires the Isabelle function package [15]. We use records to model program
states. The formal version of the loop in Algorithm 1 is given in Listing 1. Most notation
is standard functional prgoramming notation. The main exception is record updates, e.g.
’state(return := infeasible)’ denotes ’state’, but with state variable ’return’ updated to
’infeasible’.

Formally, selecting reachable targets and minimum cost paths corresponds to using
functions (get-source and get-min-augpath, respectively) that compute those items non-
deterministically. Their existence and properties are assumed by a named context, a so-called
locale. These allow us to fix constants and to make corresponding assumptions which are
both available within the locale.

We introduced definitions to specify which execution branch is taken when doing an
iteration of the loop body, e.g. SSP -call-4-cond state indicating the recursive case from
the function definition above. It has the same structure as the loop body and returns True

for exactly one branch and False for all others. Similarly, the effect of a single execution
branch can be modelled, e.g. SSP -upd4 state. We can show a simplification lemma and an

CVIT 2016



23:8 A Formal Analysis of Capacity Scaling Algorithms for Minimum Cost Flows

Listing 1: Recursive function formalising SSP

1 function SSP:: ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
2 SSP s t a t e = ( l e t b = b a l a n c e s t a t e ; f = c u r r e n t - f l o w s t a t e i n
3 ( i f z e r o - b a l a n c e b then s t a t e L r e t u r n := found M
4 e l s e (ca se ge t - s o u r c e b o f
5 None ⇒ s t a t e L r e t u r n := i n f e a s i b l e M |
6 Some s ⇒(ca se ge t - r e a c h a b l e - t a r g e t f b s o f
7 None ⇒ s t a t e L r e t u r n := i n f e a s i b l e M |
8 Some t ⇒( l e t P = get - min - augpath f s t ;
9 γ = min ( min ( b s ) (− b t ) ) (Rcap f (s e t P) ) ;

10 f ’ = augment - edges f γ P ;
11 b ’ = (λ v . i f v = sthenb s − γ e l s e
12 i f v = t then b t + γ e l s e b v )
13 i n SSP (s t a t e L c u r r e n t - f l o w := f ’ , b a l a n c e := b ’ M ) ) ) ) ) )

Listing 2: Customised simplification for SSP

1 lemma SSP - s imps : assumes SSP -dom s t a t e
2 shows SSP - r e t - 1 - cond s t a t e =⇒ SSP s t a t e = (SSP - r e t 1 s t a t e )
3 SSP - r e t - 2 - cond s t a t e =⇒ SSP s t a t e = (SSP - r e t 2 s t a t e )
4 SSP - r e t - 3 - cond s t a t e =⇒ SSP s t a t e = (SSP - r e t 3 s t a t e )
5 SSP - c a l l - 4 - cond s t a t e =⇒ SSP s t a t e = SSP (SSP - upd4 s t a t e )

Listing 3: Customised induction rule for SSP

1 lemma SSP - i n d u c t : assumes SSP -dom s t a t e
2 assumes

∧
s t a t e . JSSP -dom s t a t e ;

3 SSP - c a l l - 4 - cond s t a t e =⇒ P (SSP - upd4 s t a t e ) K =⇒ P s t a t e
4 shows P s t a t e

Listing 4: Single-step preservation of Optimality

1 lemma assumes SSP - c a l l - 4 - cond s t a t e i nva rOpt s t a t e
2 shows i n va rOpt (SSP - upd4 s t a t e )

induction principle for SSP , given in Listings 2 and 3, respectively. The preservation of the
invariants is proven for single updates like the one in Listing 4 and by the simplification and
induction lemmas this can be lifted to a complete execution of SSP . Proof automation makes
this process very smooth and convenient. We follow the same formalisation methodology for
all the algorithms we consider below.

4 The Capacity Scaling Algorithm

The naive Successive Shortest Path Algorithm (Algorithm 1) arbitrarily selects sources,
targets and mincost paths for the augmentations. This is refined to Capacity Scaling (CS)
by selecting those triples where the residual capacities and balances are above a certain
threshold that is halved from one scaling phase to another (Algorithm 2). It was proposed
by Edmonds and Karp [7]. As SSP, CS works on a state consisting of E , V , u, c, b, b′ and f .
The algorithm uses two nested loops: The outer one is responsible for monitoring the scaling
and determining problem infeasibility. The inner one’s purpose is to process every suitable
path until none are remaining. It is also responsible for terminating the execution when a
solution has been found. As this refines SSP, the proofs for correctness and termination do
not differ significantly. The same three invariants may be reapplied. Note that capacities
and balances must still be integral to ensure termination.

Intuitively CS behaves like SSP, but only greedily chooses large steps towards the optimal
solution, thus hastening progress leading to a polynomial rather than exponential worst-case
running time. Each of these steps is a minimum cost augmenting path p from a source s to a
target t with a ‘step size’ of min{uf (p), b(s),−b(t)} When no paths of the right cost remain,
it halves the thresholds for treatment and continues with a more fine-grained analysis.
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Algorithm 2 capacity-scaling(E , V, u, c, b)

1 initialise b′ ← b, f ← 0 and γ = 2⌊log2 B⌋ where B = max{1, 1
2

∑
v∈V

b(v)};
2 while True do
3 while True do
4 if ∀ v ∈ V. b′(v) = 0 then return f ;
5 else if ∃ s t P . P is s-t-path, uf (P ) ≥ γ, b′(s) ≥ γ and b′(t) ≤ −γ then
6 take such s, t and P ; augment γ along P ;
7 b′(s)← b′(s)− γ; b′(t)← b′(t) + γ;
8 else break;
9 if γ = 1 then return infeasible;

10 else γ ← 1
2 · γ;

Listing 5: Formalisaton of Scaling

1 function (domint ro s ) SSP:: ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
2 SSP s t a t e = ( l e t b = b a l a n c e s t a t e ; f = c u r r e n t - f l o w s t a t e i n
3 ( i f z e r o - b a l a n c e b then s t a t e L r e t u r n := s u c c e s s M
4 e l s e (ca se ge t - s o u r c e - t a r g e t - path f b o f
5 None ⇒ s t a t e L r e t u r n := notye t t e rm M |
6 Some (s , t , P) ⇒( l e t γ = min (min (b s ) (− b t ) ) (Rcap f (s e t P) ) ;
7 f ’ = augment - edges f γ P ;
8 b ’ = (λ v . i f v = s then b s − γ e l s e
9 i f v = t then b t + γ e l s e b v )

10 i n SSP (s t a t e L c u r r e n t - f l o w := f ’ , b a l a n c e := b ’ M ) ) ) ) )
11

12 definition s sp (γ::nat ) ≡ SSP . SSP E u (ge t - s o u r c e - t a r g e t - path γ )
13

14 function (domint ro s ) S c a l i n g :: nat ⇒ ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
15 S c a l i n g l s t a t e = ( l e t s t a t e ’ = s sp (2^ l −1) s t a t e i n
16 (ca se r e t u r n s t a t e ’ o f s u c c e s s ⇒ s t a t e ’
17 | f a i l u r e ⇒ s t a t e ’
18 | no tye t t e rm ⇒( i f l = 0 then s t a t e ’ L r e t u r n:= f a i l u r e M
19 e l s e S c a l i n g (l −1) s t a t e ’ ) ) )

Formalisation. As it can be seen from Listing 5, a modified version of SSP realises the inner
loop. Paths returned by the selection function are assumed to have capacity above γ, which
is enforced by the definition statement. In case of existence, get-source-target-path γ returns
a source, a target and a minimum cost path with capacity above γ. The outer loop works on
the logarithm of γ, denoted by l. The major difference between SSP from Listing 5 and the
one from Listing 1 is Line 5: In the modified version, the flag is set to notyetterm which
indicates that no more suitable paths were found and the decission on infeasibility is left to
the outer loop.

Most of the claims and proofs are inherited from the formalisation of SSP and therefore
they are conditioned on termination for the respective input state. This can be proven from
Invariant 2. The outer loop is a function on two arguments, namely, the logarithm of the
threshold and the program state. Its termination follows from the decrease in γ.

For SSP, we had the sum of the balances’ absolute values as termination measure decreasing
in any iteration by at least 1. This is linear in the balances and therefore exponential w.r.t.
input length. On the contrary, CS halves the measure after a polynomial number of iterations
resulting in fast progress. The number of scaling phases is logarithmic w.r.t. the greatest
balance and thus, linear in terms of input length. The time for finding a minimum cost
path is polynomial and an augmentation is O(n). Provided infinite capacities, the number
of augmentations per phase is at most 4n [14]. For an efficient path computation, CS even
runs in O(n(n2 + m) log B) [7, 14], where B is the greatest absolute value of a balance.
This is polynomial w.r.t. input length including the representation of balances. It is not
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polynomial w.r.t. only the number of vertices and edges. Such an algorithm would be strongly
polynomial.

5 Orlin’s Algorithm

Orlin’s Algorithm (Algorithm 3) allows for a strongly polynomial worst-case running time of
O(n log n(m + n log n)) [22, 4, 14]. Similar to Algorithm 2, we have an outer loop monitoring
the threshold γ and an inner loop treating all paths with a capacity above that (augment-
edges()). After each threshold decrease, a forest that is maintained by the algorithm is
updated. In the return value of augment-edges(), the flag indicates whether an optimum
flow was found or infeasibility was detected. Otherwise, the algorithm continues. The top
loop and subprocedures work on a program state consisting of the variables E , V, u, c, b, b′,
f , F , actives, γ and r.

Here, the flow on only active edges and forest edges can be augmented, which is done using
augment-edges(). All edges are active initially. Edges deleted from this set are deactivated.
The subprocedures use a small positive constant ϵ. Its value influences the timespans between
component merges. Positivity ensures termination of augment-edges().

For the previous algorithms, the running time depended on B. On the contrary, Orlin’s
Algorithm avoids that using a continuously growing spanning forest F of edges. The crucial
observation is that this forest is used s.t. only one vertex (henceforth, the representative)
per forest connected component (henceforth, F -component) is considered as a source or as a
target in searching for augmenting paths. This reduction in augmentation effort is achieved
by maintaining the forest, which can be done in time polynomial in n and m.

Algorithm 3 orlins(E , V, u, c, b)

1 initialise b′ ← b; f ← 0; r(v)← v for any v; F ← ∅; actives = E ; γ ← max
v∈V
|b′(v)|;

2 while True do
3 (b′, f, flag)← augment-edges(E ,V, u, c, b′, f,F , actives, γ, r);
4 if flag = found then return f ;
5 if flag = infeasible then return infeasible;
6 if ∀ e ∈ actives. f(e) = 0
7 then γ ← min{γ

2 , max
v∈V
|b′(v)|};

8 else γ ← γ
2 ;

9 (b′, f,F , r, actives)← maintain-forest(E ,V, u, c, b′, f,F , actives, γ, r);

Partial correctness of the algorithm is shown by invariants on program states and properties
of the subprocedures. Line specifications refer to the state after executing the respective line.
Consider the following invariants about the execution of orlins(G, b):

1. γ is strictly positive, except when b = 0.
2. Any active edge e outside F has a flow f(e) that is a non-negative integer multiple of γ.
3. Endpoints of a deactivated edge belong to the same F-component.
4. Only representatives can have a non-zero balance.
5. For states in Line 3, any edge e ∈ F has f(e) > 4 · n · γ.
6. f is optimum for the balance b− b′.
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The balance potential Φ is important for the number of augmentations during subproced-
ures and their termination. For b′ and γ it is defined as:

Φ(b′, γ) =
∑
v∈V

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
When writing Φ(state), we refer to the respective b′ and γ. We will later see in detail how
the subprocedures work. For now, assume the subprocedures have the following properties:

P1. For the result of augment-edges(), we have |b′(x)| ≤ (1− ϵ) · γ for any x. If flag ̸= found

there is x with b′(x) > 0. flag is found when b′ = 0 is reached.
P2. For any e, the change in f(e) due to calling augment-edges() is an integer multiple of γ.
P3. Calling maintain-forest() preserves Invariants 3 and 4. Calling augment-edges() preserves

Invariant 4.
P4. For any edge that is in F after calling maintain-forest(), the flow reduction incurred during

this subprocedure is at most nβ where ∀ v. |b′(v)| ≤ β before calling maintain-forest().
For edges e outside F after the call, there was no change in f(e).

P5. Φ(maintain-forest(state)) ≤ Φ(state) + n.
P6. Provided the other invariants hold, Invariant 6 is preserved by either subprocedure.
P7. The number of path augmentations during augment-edges(state) is at most Φ(state).

The flow decrease along any edge during augment-edges(state) is at most Φ(state) · γ.
P8. Assume all invariants hold on state. If flag = found in the result of augment-edges(state),

f is optimum. If flag = infeasible, the flow problem is indeed infeasible.

We examine how the invariants and properties yield partial correctness.

▶ Theorem 8 (Partial Correctness). Assume the algorithm terminates on an uncapacitated
instance with conservative weights. If a flow is found, it is a mincost flow, otherwise the
problem is infeasible.

Proof. b = 0 yields immediate termination with f = 0 as correct result (P1). If b ̸= 0, we
show the invariants for the last state on which augment-edges() is called. All invariants hold
for the initialisation given in the algorithm. The pseudocode and P1 imply preservation of
Invariant 1. The flow along edges outside F is only changed by augment-edges() (P4) and
the change is integral multiple of γ (P2) implying preservation of Invariant 2. The arguments
for Invariants 3 and 4 are simple (P3). Preservation of Invariant 5 is more difficult. Assume
it holds in Line 3. We know |b′(x)| ≤ (1− ϵ) · γ for any x (P1). After modifying γ (Lines 6 -
8), the flow along forest edges is above 8nγ, Φ(b′, γ) ≤ n and ∀x. |b′(x)| < 2 · γ. Executing
maintain-forest() can cause a decrease of 2nγ for forest edges (P4) and an increase in Φ
by at most n (P5). Calling augment-edges() is responsible for a further flow decrease of at
most 2nγ (P7). The overall decrease along forest edges was at most 4nγ. By P6 we obtain
Invariant 6 for the state before the last call of augment-edges(). P8 gives the claim. ■

Note: we restrict ourselves to infinite edge capacities, which is insignificant as problems
can be reduced to the uncapacitated setting with a linear increase in input length [14].
Our theorems here require weight-conservativity which is inherited from Algorithm 1 and
Algorithm 2 as a constraint. However, we drop the restriction to integral capacities and
balances.

We now state the subprocedures and show that they satisfy the aforementioned properties.
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Algorithm 4 augment-edges(E , V, u, c, b′, f, F , actives, γ)

A1 while True do
A2 if ∀v ∈ V. b′(v) = 0 then return (b′, f, found);
A3 else if ∃ s . b′(s) > (1− ϵ) · γ then
A4 if ∃ t . b′(t) < −ϵ · γ ∧ t is reachable from s then
A5 take such s, t, and a connecting path P with original edges from actives ∪ F ;
A6 augment f along P from s to t by γ;
A7 b′(s)← b′(s)− γ; b′(t)← b′(t) + γ;
A8 else return (b′, f, infeasible);
A9 else if ∃ t . b′(t) < −(1− ϵ) · γ then

A10 if ∃ s . b′(s) > ϵ · γ ∧ t is reachable from s then
A11 take such s, t, and a connecting path P with original edges from actives ∪ F ;
A12 augment f along P from s to t by γ;
A13 b′(s)← b′(s)− γ; b′(t)← b′(t) + γ;
A14 else return (b′, f, infeasible);
A15 else return (b′, f, please continue);

5.1 Augmenting the Flow

We now argue why augment-edges() satisfies the properties stated in the previous section.
P1, P2, P3, P6, P7 and P8 assert something about augment-edges(). P1 can be inferred from
the subprocedure’s structure. The only possible amount to augment is γ which yields P2.
P3 (Preservation of Invariant 4) also follows from the structure.

Proof Sketch for P6. We assume the invariants for hold state and we define (b′, f, flag) =
augment-edges(state). Then f is a minimum cost flow for balances b−b′ because of Theorem 4.
The restriction to active and forest edges (Lines A5 and A11) is unproblematic: Simulate
deactivated edges with forest paths which are of minimum costs. ■

Proof Sketch for P7. Show that any iteration decreases Φ at least by 1, thus augment-
edges(state) performs at most Φ(state) iterations and the flow decrease for an edge is at
most Φ(state) · γ. The proof of a strict decrease in Φ only works for ϵ > 0. ■

Proof Sketch for P8. If the algorithm found a flow, then ∀v ∈ V . b′(v) = 0 (Line A2).
Together with preservation of the optimality invariant, it gives the first subclaim.

If the algorithm asserts infeasibility, one can exploit information about b′ from Lines
A3, A4, A9 and A10. By employing residual cuts and the analogous definition where every
direction is reversed, one can show infeasibility for both cases. The proof is similar to that of
Theorem 5. The argument only works for ϵ ≤ 1

n . ■

By this, we have shown that augment-edges() satisfies all asserted properties. We also
saw the restriction 0 < ϵ ≤ 1

n . Note: one might think that ϵ could be assigned to 0. As we
shall see later on, that would make it impossible for us to derive the worst-case running time
bound. In essence, we need to allow vertices to be processed if they are ’slightly’ below the
threshold, otherwise the algorithm take exponentially many iterations, and its running time
will depend on B. Interested readers should consult sec. 5.2 [22].
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Figure 4 Merging forest components: Remaining balances b′, forest edges, flow values and
representatives are blue, red, black and purple, respectively. Assume the balances are non-negative.

Algorithm 5 maintain-forest(E , V, u, c, b′, f, F , actives, γ, r)

F1 while ∃e = (x, y). e ∈ actives ∧ e ̸∈ F ∧ f(e) > 8nγ do
F2 F ← F ∪ {e};
F3 if |F-component of y| ≥ |F-component of x| then exchange x and y;
F4 let x′ = r(x) and y′ = r(y) the respective representatives;
F5 take residual path Q ⊆ F connecting x′ and y′;
F6 if b′(x′) > 0 then augment f along Q by b′(x) from x′ to y′;
F7 else augment f along

←−
Q by −b′(x) from y′ to x′;

F8 b′(y′)← b′(y′) + b′(x′); b′(x′) = 0;
F9 foreach v reachable from y′ in F do r(v)← y′ ;

F10 foreach d = (u, v). d ∈ actives ∧ {r(u), r(v)} = {y′} do actives ← actives\{d};
F11 return (b′, f,F , actives, r);

5.2 Maintaining the Forest
We now discuss the last part of the algorithm, namely, maintaining the forest. The definition
of maintain-forest() can be seen in Algorithm 5. We add active edges with flow above 8nγ

to F , which inevitably changes the connected components of the forest – a new component
is created for every added edge by merging the components to which the two end points of
edge belong. Since non-zero balance is only allowed for representatives, balances must be
re-concentrated at one of the two representatives after merging two components.2 Moreover,
all edges between them are deactivated and the representatives must be updated. For a forest
F , F is the corresponding residual network consisting only of forest edges. Re-concentration
is done by augmentations along paths in F. An example of how balances, flow and forest
change is displayed in Fig. 4.

Only P3-P6 make assertions about maintain-forest() and we argue why they are indeed
satisfied. P3 (preservation of Invariant 3) is easy to see since it is precondition for deactivation
to have the same representatives (Line F10).

Proof Sketch for P4. Invariants F1 and F2 bound the forest edges’ flow decrease:
F1. For any x, |b′(x)| is bounded by the product of its F-component’s cardinality and β.
F2. For any e ∈ F , we have f(e) > α− β · |X| where X is the F-component of e.
Their conjunction is preserved by maintain-forest(). It is important to always concentrate
the balances at the larger component’s representative as done in the algorithm. ■

Any iteration merges two F-components making n− 1 an upper bound for the number
of iterations. P5 asserts Φ(maintain-forest(state)) ≤ Φ(state) + n. This holds because the
potential cannot increase by more than 1 per iteration, as shown in the following lemma.

2 Cardinalities of forest components in the pseudocode refer to the number of vertices in the component.
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▶ Lemma 9. The increase of Φ during a single iteration of maintain-forest() is at most 1.

Proof. Let state be the program state in Line F1 and state′ be the one in Line F9, respectively.
Program variables refer to state. It follows:

Φ(state′) =
∑

v∈V\{x′,y′}

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
+

⌈ 0
γ
− (1− ϵ)

⌉
+

⌈ |b′(y′) + b′(x′)|
γ

− (1− ϵ)
⌉

=
∑

v∈V\{x′,y′}

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
+

⌈ |b′(y′)|+ |b′(x′)|
γ

− (1− ϵ)
⌉

≤
∑

v∈V\{x′,y′}

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
+

⌈ |b′(x′)|
γ

⌉
+

⌈ |b′(y′)|
γ

− (1− ϵ)
⌉

≤
∑

v∈V\{x′,y′}

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
+

⌈ |b′(x′)|
γ

− (1− ϵ)
⌉

+ 1 +
⌈ |b′(y′)|

γ
− (1− ϵ)

⌉
= Φ(state) + 1 ■

Proof of P6. To apply Theorem 4 we need optimality of forest paths Q and
←
Q used for

augmentations. Suppose this were not true. There is P with c(P ) < c(Q) connecting the
same vertices. Since c(

←−
Q ) = −c(Q), P

←−
Q is a cycle with c(P

←−
Q ) = c(P ) + c(

←−
Q ) < 0 and

uf (P
←−
Q ) > 0 contradicting Theorem 1 and Invariant 6. The case for

←
Q is analogous. Due

to Invariant 5, the flow in F is positive. Infinite edge capacities imply positive residual
capacities for F. ■

This concludes our proofs that maintain-forest() satisfies properties P3-P6.

5.3 Termination and Running Time
For the inner loops we have termination measures decreasing in any iteration, namely, the
number of components and Φ. For the outer loop, there is a maximum number of iterations
until some desirable situation occurs. A vertex v is important iff |b′(v)| > (1 − ϵ) · γ [14],
i.e. its contribution to Φ is positive. We repeatedly wait for the occurrence of an important
vertex and ensure a merge of two forest components some iterations later. We define
ℓ = ⌈log(4 ·m · n + (1− ϵ))− log ϵ⌉+ 1 and k = ⌈log n⌉+ 3. It can be shown that (a) if we
wait for k + 1 iterations, a vertex has become important or there is a component merge,
and that (b) for an important vertex, ℓ + 1 iterations enforce its component being increased.
There can be at most n− 1 such merges, which yields termination.

Concerning running time, we assume atomic bounds for basic parts of the algorithm. For
instance, tF B is an upper bound for the time consumed when executing the loop body in
maintain-forest() and tF C is the time for checking the condition (analogously tAC and tAB

for augment-edges(), and tOC and tOB for orlins()). Time consumption can be bounded by
the term

(n · (ℓ + k + 2)− 1) · (tOC + tOB + tAC + tF C) +
(n− 1) · (tF C + tF B + tAC + tAB) + (2n− 1) · (ℓ + 1) · (tBC + tBB) + tBC + tOC

The proof involves bounding the number of iterations of the subprocedures by n and Φ,
respectively, a connection between the number of important vertices and Φ, and bounding
the number of occurences of important vertices by results on so-called Laminar Families.
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5.4 Formalisation
Listing 6: Locale to specify path selection for augment-edges()

1 locale augment - edges = a l g o +
2 fixes get - s o u r c e - t a r g e t - path :: ’ a Algo - s t a t e ⇒ ’ a ⇒ ’ a ⇒ ’ a Redge l i s t and
3 get - v e r t e x :: ( ’ a ⇒ boo l ) ⇒ ’ a
4 assumes get - s o u r c e - t a r g e t - path - ax ioms :
5 J get - s o u r c e - t a r g e t - path s t a t e s t = P ; s ∈ V ; t ∈ V ; s ̸= t
6 aux - i n v a r s t a t e ; (∀ e ∈ F s t a t e . c u r r e n t - f l o w s t a t e e > 0) ;
7 r e s r e a c h (c u r r e n t - f l o w s t a t e ) s t K =⇒
8 (Rcap (c u r r e n t - f l o w s t a t e ) (s e t P) > 0 ∧
9 ( i n v a r - i s O p t f l o w s t a t e −→ i s - min - path (c u r r e n t - f l o w s t a t e ) s t P) ∧

10 oedge ` s e t P ⊆ a c t i v e s s t a t e ∪ F s t a t e ∧ d i s t i n c t P

Listing 7: Formalisation of the Top Loop of Orlin’s algorithm.

1 function (domint ro s ) o r l i n s :: ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
2 o r l i n s s t a t e = ( i f r e t u r n s t a t e = s u c c e s s then s t a t e
3 e l s e i f r e t u r n s t a t e= f a i l u r e then s t a t e
4 e l s e ( l e t f = c u r r e n t - f l o w s t a t e ; b = b a l a n c e s t a t e ;
5 γ = c u r r e n t -γ s t a t e ; E ’ = a c t i v e s s t a t e ;
6 γ ’ = ( i f ∀ e ∈ E ’ . f e = 0 then min (γ / 2) (Max { | b v | | v ∈ V} )
7 e l s e (γ / 2) ) ;
8 s t a t e ’ = ma in ta i n - f o r e s t (s t a t e L c u r r e n t -γ := γ ’ M ) ;
9 i n o r l i n s (augment - edges s t a t e ’ ) ) )

Listing 8: A function modelling the running time of orlins().

1 function (domint ro s ) o r l i n s T i m e :: nat ⇒(’ a , ’ b , ’ d ) Algo - s t a t e
2 ⇒ nat × (’ a , ’ b , ’ d ) Algo - s t a t e where
3 ( o r l i n s T i m e t tOC s t a t e ) = ( i f (r e t u r n s t a t e = s u c c e s s ) then (t tOC , s t a t e )
4 e l s e i f (r e t u r n s t a t e = f a i l u r e ) then (t tOC , s t a t e )
5 e l s e ( l e t f = c u r r e n t - f l o w s t a t e ;
6 b = b a l a n c e s t a t e ;
7 γ = c u r r e n t -γ s t a t e ;
8 E ’ = a c t i v e s s t a t e ;
9 γ ’ = ( i f ∀ e ∈ to - s e t E ’ . f e = 0 then

10 min (γ / 2) (Max { | b v | | v . v ∈ V} )
11 e l s e (γ / 2) ) ;
12 s t a t e ’ t ime = mainta in −f o r e s t T i m e (s t a t e L c u r r e n t -γ := γ ’ M ) ;
13 s t a t e ’ ’ t ime = augment−edgesTime (snd s t a t e ’ t ime )
14 i n (( tOC + tOB + f s t s t a t e ’ t ime + f s t s t a t e ’ ’ t ime )
15 +++ (o r l i n s T i m e t tOC (snd s t a t e ’ ’ t ime ) ) ) )
16 )

General. We assume functions selecting paths non-deterministically via locales (see
Listing 6). The locales were later instantiated suitably. As above, we model program states
as records and use customised simplification and induction. However, here the algorithm’s
complexity is more substantial (see Listings 9 and 7). Also, we note that formal proofs
about paths often need pairwise distinctness of the vertices or edges which is often neglected
in an informal setting. Forest. For connected components, we reuse Abdulaziz et al.’s [2] RIght now,

we do not say
anything on
invariants and
monotone
properties.

formalisation modelling undirected edges as sets. Paths based on that must be transformed
to paths over residual edges. Each direction is mapped to a residual edge pointing is this
direction. Residual edges realising opposite directions originate from the same graph edge.
This implies that converting a path over undirected edges and its reverse yields opposite
costs as needed to show P6.
Termination. The termination proof reasons about a fixed number of iterations. We
introduced definitions expressing the effect of a single iteration, which can then be combined
to a fixed number by the function iteration compow. As soon as executing a single step does
not change anything, the recursive version would also terminate yielding an equal result.
Running Time. We model algorithm running times as functions returning natural numbers,
using an extension of Nipkow et al.’s approach. In this approach, for every function f : α→ β,
we devise a functional program fTime : α → N with the same recursion and control-flow
structure as the algorithm whose running time we measure. In its most basic form, for a
given input x : α, fTime(x) returns the number of the recursive calls that f would perform
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while processing x. If f involves calls to other functions, the running times of the called
functions are added to the number of recursive calls of f . To modularise the design of these
running time models, we use locales to assume running times of the called functions. An
example of such a running time model is shown in Listing 8, which models the running
time of Orlin’s algorithm. Here, there running times of the forest and path augmentation
procedures are only assumed, without explicitly specifying them, in the locale containing
the definition of orlinsTime. Mathematically, proving the upper bound on the running time
requires basic results about laminar families, where the set of connected components of the
forest is viewed as a laminar family.

Listing 9: Formalisation of augment-edges() and corresponding Induction Rule

1 function (domint ro s ) augment - edges :: ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
2 augment - edges s t a t e = ( l e t f = c u r r e n t - f l o w s t a t e ; b = b a l a n c e s t a t e ;
3 γ = c u r r e n t -γ s t a t e
4 i n ( i f ∀ v ∈ V . b v = 0 then s t a t e L r e t u r n:=s u c c e s s M
5 e l s e i f ∃ s ∈ V . b s > (1 − ϵ ) ∗ γ then
6 ( l e t s = get - v e r t e x (λ s . b s > (1 − ϵ ) ∗ γ ∧ s ∈ V)
7 i n ( i f ∃ t ∈ V . b t < − ϵ ∗ γ ∧ r e s r e a c h f s t then
8 l e t t = get - v e r t e x (λ t . b t < − ϵ ∗ γ ∧ r e s r e a c h f s t ∧ t ∈ V) ;
9 P = get - s o u r c e - t a r g e t - path s t a t e s t ;

10 f ’ = augment - path f γ P ;
11 b ’ = (λ v . i f v = s then b s − γ
12 e l s e i f v = t then b t + γ e l s e b v ) ;
13 s t a t e ’ = s t a t e L c u r r e n t - f l o w := f ’ , b a l a n c e := b ’ M i n
14 augment - edges s t a t e ’
15 e l s e s t a t e L r e t u r n := f a i l u r e M ) )
16 e l s e i f ∃ t ∈ V . b t < − (1 −ϵ ) ∗ γ then
17 ( l e t t = get - v e r t e x (λ t . b t < − (1 −ϵ ) ∗ γ ∧ t ∈ V)
18 i n ( i f ∃ s ∈ V . b s > ϵ ∗ γ ∧ r e s r e a c h f s t then
19 l e t s = get - v e r t e x (λ s . b s > ϵ ∗ γ ∧ r e s r e a c h f s t ∧ s ∈ V) ;
20 P = get - s o u r c e - t a r g e t - path s t a t e s t ;
21 f ’ = augment - path f γ P ;
22 b ’ = (λ v . i f v = s then b s − γ
23 e l s e i f v = t then b t + γ e l s e b v ) ;
24 s t a t e ’ = s t a t e L c u r r e n t - f l o w := f ’ , b a l a n c e := b ’ M i n
25 augment - edges s t a t e ’
26 e l s e s t a t e L r e t u r n := f a i l u r e M ) )
27 e l s e s t a t e L r e t u r n := notye t t e rm M ) )
28

29 lemma augment - edges - i n d u c t : assumes augment - edges -dom s t a t e
30

∧
s t a t e . J augment - edges -dom s t a t e ;

31 augment - edges - c a l l 1 - cond s t a t e =⇒ P (augment - edges - c a l l 1 - upd s t a t e ) ;
32 augment - edges - c a l l 2 - cond s t a t e =⇒ P (augment - edges - c a l l 2 - upd s t a t e ) K

=⇒ P s t a t e
33 shows P s t a t e

6 Discussion

The algorithms that we considered here share a number of features with other maximum flow
algorithms that were formally analysed before, most notably the fact that they iteratively
compute augmenting paths to incrementally improve a solution until an optimal solution is
reached. Those algorithms also use residual graphs, which are intuitively graphs containing
the remaining capacity w.r.t. the current flow maintained by the algorithm, and which
have been formalised by Lammich and Sefidgar [17]. The most advanced one out of these
is probably the Push-Relabel Algorithm by Goldberg and Tarjan. Another combinatorial
optimisation algorithm that was also formalised is Edmonds’ blossom shrinking algorithm
for maximum cardinality matching in general graphs [2].We are not

stating any
other differ-
ences

However, our work here is different from those previously studied algorithms for maximum
flow in one crucial aspect: here we cover the algorithms which use scaling, a technique for
designing fast optimisation algorithms, including algorithms with the fastest worst-case
running times for different variants of matching and shortest path problems [6, 9, 10, 11, 23],
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in addition to minimum-cost flows. Our work here provides a blueprint to formalise the
correctness of those other scaling algorithms. Furthermore, the running time proof here
depends on properties of laminar families, making it one of the more advanced running time
proofs to be formalised.

A main outcome of our work, from a mathematical perspective, is our proof of Theorem 4,
which is its first complete combinatorial proof, and our simplified proof of Theorem 1. Those
outcomes, especially the construction we devised for the former, highlight the potential
role of formalising deep proofs in filling gaps as well as in the generation of new proofs
and/or insights. Indeed, this was a recurring theme across the project, e.g. there were other
non-trivial claims in the main textbook we used as reference [14], for which no proof is
given. E.g. it is claimed that the accumulated augmentations through a forest edge are below
2(n− 1)γ. We could not formalise the proof of this in the textbook as it also had gaps, and
we devised Invariants F1 and F2 to be able to prove it. Other gaps were in the proofs of Please have

a look at
TODO file
and treat
those points
that are
marked with
a star, those
with + were
treated by
myself.

Properties P7, P6, Lemma 5, Lemma 9, and a few parts of the termination proof, but we
have to refer interested readers to the formalisation due to the lack of space.

The formalisation of the algorithms presented here is around 25K lines of proof scripts. Our
methodology is based on using Isabelle/HOL’s locales to implement Wirth’s notion of step-wise
refinement [25], thereby compartmentalising different types of reasoning. This locale-based
implementation of refinement was used earlier by many authors, e.g. by Nipkow [21], Maric [20],
and Abdulaziz et al. [2]. In this approach, non-deterministic computation is handled by
assuming the existence and properties of functions that compute non-deterministically,
without assuming anything about the functions’ implementation. Our formalisation is one
further example showing that this approach scales to proving the correctness of some of the
most sophisticated algorithms. We also note that our focus here is more on formalising the
mathematical argument behind the algorithm and less on obtaining an executable program,
which is nonetheless attainable using this locale-based approach. A notable alternative
implementation of refinement is Peter Lammich’s [16] framework.

We note that in our work, we have used the locale-based approach in two ways: top-down
and bottom-up. Our approach to specifying augment-edges was top-down, where we assumed
the existence of a procedure for finding shortest paths between sources and targets. On the
other hand, for specifying orlins we went bottom-up, where we first defined and proved the
correctness of augment-edges and maintain-forest, and then started defining and proving the
correctness of orlins, which calls both augment-edges and maintain-forest. In the former case,
we went top-down as we had a good a priori understanding of the functions to assume and
their properties, while in the latter we went bottom-up because we had a poorer a priori
understanding of the functions to assume and their properties.

Furthermore, we define procedures as recursive functions using Isabelle’s function pack-
age [15], program states as records, and invariants as predicates on program states. We
devise automation is based on manually deriving theorems characterising different properties
of recursive functions, and combining those theorems with Isabelle’s classical reasoning and
simplification. In this approach, the automation handles proofs of invariants and monotone
properties, e.g. the growth of the forest or the changes in Φ. Again, other approaches can
be used to model algorithms and automate reasoning about them, like using monads [18]
or while combinators [5]. Both of those approaches allow for greater automation, which
is particularly useful for reasoning about low-level implementations. However, those two
approaches are problematic for manual mathematical proofs, which form the majority of our
effort, as they usually add a layer of concepts between the theorem prover’s basic logic and
the algorithm’s model.

CVIT 2016
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