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Abstract

We present the first formal correctness proof of Edmonds’ blossom shrinking
algorithm for maximum cardinality matching. We focus on formalising the math-
ematical structures and properties that allow the algorithm to run in worst-case
polynomial running time. We formalise Berge’s lemma for matching, blossoms
and their properties, and a mathematical model of the algorithm, showing that it
is totally correct. We provide the first detailed proofs of many of these properties.

Keywords: Formal Mathematics, Algorithm Verification, Matching Theory, Graph
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1 Introduction

Maximum cardinality matching is a basic problem in computer science, operational
research, graph theory, and combinatorial optimisation. In this problem, given an
undirected graph, one is to find the largest, in terms of cardinality, subset of vertex
disjoint edges of that graph.

We describe the first formal functional correctness proof of Edmonds’ blossom
shrinking algorithm [1], which is an algorithm to solve the maximum cardinality match-
ing problem in general graphs. We do the proof in the theorem prover Isabelle/HOL.
Developing a formal correctness proof for this algorithm presents substantial chal-
lenges. First, the correctness argument depends on substantial graph theory, including
results like Berge’s lemma [2]. Second, it includes reasoning about graph contractions,
with complex case analyses associated with reasoning about contractions. Third, the
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algorithm’s core procedure is an involved iterative search procedure that builds a com-
plex forest data structure. Proving its total correctness depends on a large number of
complex loop invariants and on the construction of a complex certificate.

Our contributions here include:
1. developing substantial formal libraries for: undirected graphs, including reasoning

principles for performing mathematical induction and treating connected compo-
nents; alternating paths, a necessary concept for reasoning about matchings and
matching algorithms; and matching theory, including Berge’s lemma,

2. methodology-wise, we use Isabelle/HOL’s function package to model all itera-
tive computation; Isabelle/HOL’s locales to perform algorithmic to structure our
proofs; and Isabelle/HOL’s classical reasoning to automate much of our proofs,
showing that standard tools of Isabelle/HOL already suffice to perform reasoning
about some of the most complex algorithms in a relatively elegant fashion, and

3. mathematically, despite the existence of many established expositions [3–5], we
(a) provide the first complete case analyses of two central results: the decades
old Berge’s lemma and the fact that blossom shrinking preserves augmenting
path existence; and (b) provide the first complete list of invariants and the first
detailed correctness proof of the core search procedure.

We note that parts of this work were presented in a preliminary form in an earlier
invited conference paper [6].

The structure of the paper will be as follows: we first discuss the necessary back-
ground notions. Then we have three technical sections, each dedicated to a major
algorithmic part and to the mathematics behind its correctness. In each of those
sections, in addition to presenting the formalisation, we present our own informal
proofs, which we believe provide necessary mathematical insights for those who are
interested in the formalisation, as well as those who are interested in the algorithm’s
correctness generally. Then we finish with a discussion section.

Algorithm 1 Find Max Matching(G)
1: M := ∅
2: γ := Aug Path Search(G,M)
3: while γ is an augmenting path do
4: M := M⊕ γ
5: γ := Aug Path Search(G,M)
6: end while
7: return M
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Fig. 1 An undirected graph. The green edges constitute a maximum cardinality matching.

The Algorithm

At a high-level, Edmond’s blossom-shrinking algorithm [1] works as follows. The algo-
rithm has a top loop that repeatedly searches for an augmenting path, i.e. a path
whose edges alternate in terms of membership in the matching and that begins and
ends at unmatched vertices. Initially, the current matching is empty. Whenever an
augmenting path is found, augmentation of the matching using the found augmenting
path increases the size of the matching by one. Augmentation is done by taking the
symmetric difference between the matching and the edges in the augmenting path,
which will always return a larger matching (see Fig. 2). If no augmenting path exists
with respect to the current matching, the current matching has maximum cardinality.
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Fig. 2 A figure demonstrating how a matching can be augmented by an agumenting path. The
current matching is labelled green. The dotted path is an augmenting path w.r.t that matching and
the graph on the left. The new matching is on the right, with one more edge.

The previous loop is similar to the loops of many other algorithms for matching
and, more generally, combinatorial optimisation problems. The main difficulty, how-
ever, for maximum cardinality matching in general graphs is that of searching for
augmenting paths. For instance, one could think of using a modified breadth-first or
depth-first search, which takes edges based on alternating membership in the match-
ing, to find those paths. Although this works for finding augmenting paths in bi-partite
graphs, it would not work for general graphs, as the presence of odd alternating cycles
(henceforth, odd cycles) in the graph would necessitate keeping track of whether a
given vertex has been visited through an edge in the matching, an edge not in the
matching, or both types of edges. Furthermore, this has to be done for every path,
which would make the algorithm run in an exponential worst-case running time.

Edmonds’ blossom shrinking algorithm avoids this problem based on the follow-
ing insight: odd alternating cycles in the graph can be shrunk (i.e. contracted to one
vertex) and the resulting graph has an augmenting path iff the original graph has one.
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This insight is then used to modify the general schema s.t. the search becomes for an
augmenting path or an odd cycle. If the former is found, the matching is augmented. If
the latter is found, the cycle is removed and the search continues. Crucially, this works
for any odd cycle that is found, and thus no backtracking is needed, which preserves
the polynomial worst-case running time. Having to prove that shrinking odd cycles
preserves augmenting paths and the fact that the algorithm needs data structures to
represent odd cycles, shrink them, and find them makes Edmond’s blossom shrink-
ing algorithm one of the harder algorithms to justify in the theory of combinatorial
optimisation and efficient algorithms more generally.

Methodology

We implement our verification using Isabelle/HOL’s locales, which provide a mecha-
nism to parametrically model algorithms and in a step-wise refinement approach. In
this approach, at a given step, we define an algorithm and assume that some func-
tions exist, along with desirable properties of those functions. Those properties are
written as specifications. In the next step, we define a more detailed description of
the assumed function and show that this description satisfies the specification. This is
repeated until there are no significant assumptions left or, if there are any, only triv-
ial ones from an algorithmic perspective are left, e.g. the existence of a function that
chooses an arbitrary element of a finite set.

Availability

Our formalisation can be found online at https://github.com/mabdula/Isabelle-
Graph-Library at a branch called blossom jar.

2 Background

Isabelle/HOL Notation

Isabelle/HOL [7] is a theorem prover based on Higher-Order Logic. Isabelle’s syntax
is a variation of Standard ML combined with almost standard mathematical notation.
Function application is written infix and functions are usually Curried (i.e. function
f applied to arguments x1 . . . xn is written as f x1 . . . xn instead of the standard
notation f(x1, . . . , xn)). We explain non-standard syntax in the paper where it
occurs.

A central concept for our work is Isabelle/HOL locales. A locale is a named context:
definitions and theorems proved within the locale can refer to the parameters and
assumptions declared in the heading of the locale. Here, for instance, we have the locale
graph defs fixing a graph G and the locale graph abs that additionally assumes that
the graph satisfies an invariant graph invar. We extensively use locales, as shown in
the rest of this paper, to structure the reasoning in our formalisation.
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2 definition degree where

"degree G v ≡ card ' ({e. v ∈ e} ∩ G)"

4

definition degree where

6 "degree G v ≡ card ' ({e. v ∈ e} ∩ G)"

8 locale graph_defs =

fixes G :: "'a set set"

10

definition "dblton_graph G ≡ (∀e∈G. ∃u v. e = {u, v} ∧ u ̸= v)"

12

abbreviation "graph_invar G ≡ dblton_graph G ∧ finite (Vs G)"

14

locale graph_abs =

16 graph_defs +

assumes graph: "graph_invar G"

Listing 1 Basic graph definitions: an undirected graph is formalised as a set of sets. We define a
context graph-abs, where we fix a graph G and assume that it has the right type and every edge in
it is a doubleton set and that it has a finite set of vertices.

Graphs

An edge is a set of vertices with size 2. A graph G is a finite set of edges. The degree of
a vertex v in a graph G, d(G, v), is |{e | e ∈ G ∧ v ∈ e}|. Although there is a number of
other formalisations of undirected graphs [8, 9], we started our own formalisation. We
formalised the notion of an undirected graph as shown in Listing 1. The main reason
we pursued this formalisation is its simplicity: we do not keep track of an explicit set
of vertices for each graph. Instead, the graph’s vertices are the union of the vertices of
a graph’s edges,

⋃
G, denoted by V(G) (Vs G, in Isabelle). This representation has the

advantage that one does not have to prove, with every change to the graph, that all
graph’s edges are incident on the new graph’s associated set of vertices. Nonetheless, it
has the disadvantage that it does not allow for graphs with isolated vertices. However,
this constraint has not caused us any problems in this or in the many other projects
in which we and others have used it [10–12].
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2 context fixes G :: "'a set set" begin

inductive path where

4 path0: "path []" |

path1: "v ∈ Vs G =⇒ path [v]" |

6 path2: "{v,v'} ∈ G =⇒ path (v'#vs) =⇒ path (v#v'#vs)"

8 definition "walk_betw G u p v

≡ (p ̸= [] ∧ path G p ∧ hd p = u ∧ last p = v)"

10

definition reachable where

12 "reachable G u v = (∃p. walk_betw G u p v)"

Listing 2 A vertex path in an undirected graph is defined as an inductive predicate. We define based
on that the notion of a walk between two vertices and the notion of reachability between two vertices.

A list of vertices v1v2 . . . vn is a path w.r.t. a graph G iff every {vi, vi+1} ∈ G. A
path v1v2 . . . vn is a simple path iff vi ̸= vj , for every 1 ≤ i ̸= j ≤ n. We will denote
the list of edges {v1, v2}{v1, v2}{v1, v2} . . . {vn−1, vn} occurring in a path v1v2 . . . vn
by E(v1v2 . . . vn). Paths are formally defined recursively in a straightforward fashion
as shown in Listing 2. Simple paths in Isabelle are denoted by distinct, indicating
that their vertices are pairwise distinct. A path v1v2 . . . vn is called a cycle if 3 < n
and vn = v1, and we call it an odd cycle if n is even. Note: in informal statements and
proofs, we will overload set operations to lists in the obvious fashion.

2 definition connected_component where

"connected_component G v = {v'. v' = v ∨ reachable G v v'}"
4

definition connected_components where

6 "connected_components G =

{vs. ∃v. vs = connected_component G v ∧ v ∈ (Vs G)}"

8

definition component_edges where

10 "component_edges G C = {{x, y} | x y. {x, y} ⊆ C ∧ {x, y} ∈
G}"

12 definition components_edges where

"components_edges G =

14 {component_edges G C| C. C ∈ connected_components G}"

Listing 3 Formal definitions of two different notions of connected components. The first is a
connected component of vertices and the second is a connected component of edges.

The connected component of a vertex v, denoted by K(G, v) is the set of vertices
reachable from v in the graph G. The connected components of a graph, denoted
by K(G), is {K(G, v) | v ∈ V(G)}. We define a second notion, the component edges,
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which, for a set of vertices V, denoted by E(V), is the set of edges incident on two
vertices in V. In Isabelle, these definitions are formalised as shown in Listing 3. The
connection between the two notions, which is important for proofs that require the
two perspectives on connected components, is characterised as follows.
Proposition 1. For any graph G, any two vertices v1 and v2, E(K(G, v1)) ∩
E(K(G, v2)) = ∅, if v1 ̸= v2.

Another important property of connected components is the following case
analysis.
Proposition 2. For a graph G and an edge e (= {v, u}), if K ∈ K({e}∪G), then one
of the following holds:
1. K ∈ K(G)
2. v ̸∈ V(G), u ̸∈ V(G), and K = {v, u},
3. v ∈ V(G) and u ̸∈ V(G) and K ∈ ({u} ∪ K(G, v)) ∪ (K(G) \ K(G, v)), or
4. v ∈ V(G), u ∈ V(G), K(G, v) ̸= K(G, u), and K ∈ {K(G, v) ∪ K(G, u)} ∪ (K(G) \

K(G, v) \ K(G, u)).
This case analysis is crucial for proving facts about connected components by

induction on the graph, and it is generally reusable. One last property of connected
components that we proved, and that is necessary for proving Berge’s Lemma is the
following.
Lemma 1. If K ∈ K(G) and, for every v ∈ V(G), d(G, v) ≤ 2, then there is a simple
path γ s.t. γ has exactly all elements of K.

Proof sketch. The proof is by induction on G. Let all the variable names in the induc-
tion hypothesis (I.H.) be barred, e.g. the connected component is K. The base case
has an empty graph is straightforward. For the step case, we have as an assumption
that K ∈ K({e} ∪ G), for some e, where there are two vertices s.t. e = {v, u}. From
Proposition 1, we have to consider the following four cases.

Case 1. In this case, we can immediately apply the I.H. with K assigned to K, and
obtain γ that is a simple path w.r.t. G and that has all the vertices of K. Since
G ⊆ {e} ∪ G, γ is the required witness.

Case 2. In this case, the required path is vu.

Case 3. First, we apply the I.H. to G, where K is instantiated with K(G, v). We obtain
γ that is a simple path w.r.t. G. From the premises of the induction, we know that
d(({e} ∪ G), u) ≤ 2. That means that d(G, v) ≤ 1, which means that γ starts or ends
with v. Thus u can be appended to either end of γ (the end at which v is located) and
the resulting list of vertices is the required witness.

Case 4. In this case, we apply the I.H. twice, once to K(G, v) and G and another to
K(G, u) and G. We obtain two paths γv and γu, where both are simple paths w.r.t. G
and where the first has the vertices of K(G, v) and the second has those of K(G, u). Also
each of the two paths has all the vertices of the corresponding connected component.
Following a similar argument to Case 3, we have that v is either at beginning or at
the end of γv, and the same is true for u and γu. The required witness path is γv⌢γu,
s.t. v and u are adjacent.
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Remark 1. The proof of the above lemma is an example of proofs about connected
components that use the case analysis implied by Proposition 2. It also has a theme
that recurs often in the context of this present formalisation and other formalisations
concerned with graph algorithms, namely, the occurrence of symmetries in proofs.
Here, for instance 1. the third case has two symmetric cases, namely, whether v occurs
at the beginning or at the end of γ, and 2. the fourth case has four symmetric cases,
where v and u occur in γv and γv. In the formal setting, despite spending effort on
devising lemmas capturing them, these symmetries caused the formal proofs to be
much longer than the informal (e.g. both Proposition 2 and Lemma 1 required two
hundred lines of formal proof scripts each).

definition matching where

2 "matching M ←→
(∀e1 ∈ M. ∀e2 ∈ M. e1 ̸= e2 =⇒ e1 ∩ e2 = {})"

Listing 4 Formal definition of matchings.

Matchings

A set of edges M is a matching iff ∀e, e′ ∈ M. e ∩ e′ = ∅. In Isabelle/HOL that is
modelled as shown in Listing 4. In almost all relevant cases, a matching is a subset
of a graph, in which case we call it a matching w.r.t. that graph. Given a matching
M, we say vertex v is (un)matched M iff v ∈ V(M) (does not hold). For a graph G,
M is a maximum matching w.r.t. G iff for any matching M′ w.r.t. G, we have that
|M′| ≤ |M|.

inductive alt_list where

2 "alt_list P1 P2 []" |

"P1 x =⇒ alt_list P2 P1 l =⇒ alt_list P1 P2 (x#l)"

4

definition matching_augmenting_path where

6 "matching_augmenting_path M p ≡
(length p ≥ 2) ∧

8 alt_list (λe. e /∈ M) (λe. e ∈ M) (edges_of_path p) ∧
hd p /∈ Vs M ∧ last p /∈ Vs M"

10

abbreviation "graph_augmenting_path E M p ≡
12 path E p ∧ distinct p ∧ matching_augmenting_path M p"

Listing 5 Formal definition of alternating paths.

Augmenting Paths

A list of vertices v1v2 . . . vn is an alternating path w.r.t. a set of edges E iff for some
E′ we have that 1. E′ = E or E′ = {e | e ̸∈ E}, 2. {vi, vi+1} ∈ E′ holds for all
even numbers i, where 1 ≤ i < n, and 3. {vi, vi+1} ̸∈ E′ holds for all odd numbers
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i, where 1 ≤ i ≤ n. We call a list of vertices v1v2 . . . vn an augmenting path w.r.t. a
matching M iff v1v2 . . . vn is an alternating path w.r.t. M and v1, vn ̸∈ V(M). We
call γ an augmenting path w.r.t. to the pair ⟨G,M⟩ iff it is an augmenting path w.r.t.
to a matching M and is also a simple path w.r.t. a graph G. Also, for two sets s and
t, s⊕ t denotes the symmetric difference of the two sets. We overload ⊕ to arguments
which are lists in the obvious fashion.

lemma induct_alt_list012:

2 assumes "alt_list P1 P2 l"

assumes "T []"

4 assumes "∧x. P1 x =⇒ T [x]"

assumes "∧x y zs. P1 x =⇒ P2 y =⇒ T zs =⇒ T (x#y#zs)"

6 shows "T l"

8 lemma alternating_length_balanced:

assumes "alt_list P1 P2 l" "∀x∈set l. P1 x ←→ ¬ P2 x"

10 shows "length (filter P1 l) = length (filter P2 l) ∨
length (filter P1 l) = length (filter P2 l) + 1"

12

lemma alternating_eq_iff_even:

14 assumes "alt_list P1 P2 l" "∀x∈set l. P1 x ←→ ¬ P2 x"

shows "length (filter P1 l) = length (filter P2 l) ←→ even

(length l)"

16

lemma alternating_eq_iff_odd:

18 assumes "alt_list P1 P2 l" "∀x∈set l. P1 x ←→ ¬ P2 x"

shows "length (filter P1 l) = length (filter P2 l) + 1 ←→
odd (length l)"

Listing 6 Basic principles of reasoning about alternating lists.

Alternating paths are formalised as shown Listing 5. We first define an inductive
predicate characterising what it means for a list to alternate w.r.t. two predicates, and
based on that define augmenting paths. We note that, since, as far as we are aware,
this is the first formalisation of a substantial result involving alternating lists, it is
worthwhile to display here the reasoning principles needed to reason about alternating
lists. The reasoning principles are the induction principle induct alt list012 and
the other three lemmas in Listing 6 that relate the length of an alternating list to
the predicate that holds for the last element of the alternating list. We note that
these reasoning principles are enough to derive all facts we needed in the context of
Edmonds’ blossom algorithm as well other matching algorithms [10].
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locale create_vert =

2 fixes create_vert ::"'a set ⇒ 'a"
assumes create_vert_works: "finite vs =⇒ create_vert vs /∈ vs

"

4

locale choose =

6 fixes sel

assumes sel: " J finite s; s ̸= {} K =⇒ (sel s) ∈ s"

Listing 7 Two non-deterministic functions that we assume: one to create new vertices and the other
to choose vertices.

definition

2 "sel_edge G =(

let v1 = sel (Vs G);

4 v2 = sel (neighbourhood G v1)

in

6 {v1 ,v2})"

8 lemma sel_edge:

assumes "graph_invar G" "G ̸= {}"

10 shows "sel_edge G ∈ G"

Listing 8 Two non-deterministic functions that we assume: one to create new vertices and the other
to choose vertices.

Nondeterminism

Edmonds’ blossom shrinking algorithm has multiple computational steps that are
most naturally modelled nondeterministically. In a locale-based approach to nondeter-
minism, an approach to model nondeterminism is to assume functions that perform
nondeterministic computation steps. If the algorithm is to executed, those functions
are to be instantiated with executable implementations. This includes functions to
non-deterministically choose edges from a graph or a matching, a neighbour of a
vertex, etc. In our approach to model that nondeterminism, however, we aspire to
limit nondeterminism to a minimum, i.e. we wanted to assume a minimal number of
nondeterministic functions in the verified algorithm. The only place where there is
nondeterminism in the way we modelled the algorithm are in the locales choose and
create vert, shown in Listing 7. There, we assume the presence of a function that
can choose an arbitrary vertex from a finite set of vertices. Based on those functions,
we define all other nondeterministic functions used throughout the algorithm. List-
ing 8, for instance, shows how we define a function that chooses an arbitrary edge
from a set of edges. Concentrating all nondeterminism that way aims at making the
generation of an executable implementation a more straightforward process, requiring
minimal modifications to our current formalisation.
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3 The Top Loop

locale find_max_match = graph_abs G for G +

2 fixes aug_path_search ::"'a set set ⇒ 'a set set ⇒ ('a list)

option"

assumes

4 aug_path_search_complete:

" J matching M; M ⊆ G; finite M;

6 (∃p. graph_augmenting_path G M p) K =⇒
(∃p. aug_path_search G M = Some p)" and

8 aug_path_search_sound:

" J matching M; M ⊆ G; finite M;

10 aug_path_search G M = Some p K =⇒
graph_augmenting_path G M p"

Listing 9 An Isabelle/HOL locale showing the parameters on which the top loop of Edmonds’
blossom algorithm is parameterised. Most notably, it assumes the presence of a function that returns
an augmenting path, if one exists.

function (domintros) find_max_matching where

2 "find_max_matching M =

(case aug_path_search G M of Some p ⇒
4 (find_max_matching (M ⊕ (set (edges_of_path p))))

| _ ⇒ M)"

Listing 10 A recursive function modelling the top loop of Edmonds’ blossom shrinking algorithm.

In Isabelle/HOL, Algorithm 1 is formalised in a parametric fashion within the
Isabelle locale find max match whose header is shown in Listing 9. The algorithm
itself is formalised as the recursive function shown in Listing 10. Recall that Algo-
rithm 1 is parameterised over the function Aug Path Search, which is a function
that searches for augmenting paths, if any exists. To formalise that, we identify
aug path search as a parameter of the locale find max match, corresponding to the
function Aug Path Search. The function aug path search should take as input a
graph and a matching. It should return an (’a list) option typed value, which
would either be Some p, if a path p is found, or None, otherwise. In the case of
aug path search, it should return either Some p, where p is a path in case an aug-
menting path is found, or None, otherwise. There is also the function the that, given a
term of type ’a option, returns x, if the given term is Some x, and which is undefined
otherwise.

Functions defined within a locale are parameterised by the constants which are
declared in the locale’s definition. When a function is used outside a locale, these
parameters must be specified. So, if find max matching is used outside the locale
above, it should take a function which computes augmenting paths as a parameter.
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Similarly, theorems proven within a locale implicitly have the assumptions of the
locale. So if we use the lemma find max matching works (Listing 13) outside of the
locale, we would have to prove that the functional argument to find max matching

satisfies the assumptions of the locale, i.e. that argument is a correct procedure for
computing augmenting paths. The use of locales for performing gradual refinement
of algorithms allows us to focus on the specific aspects of the algorithm relevant to a
refinement stage, with the rest of the algorithm abstracted away.

3.1 Correctness

The correctness of Algorithm 1 depends on the assumed behaviour of
Aug Path Search, i.e. Aug Path Search has to conform to the following specifi-
cation in order for Algorithm 1 to be correct.
Specification 1. Aug Path Search(G,M) is an augmenting path w.r.t. ⟨G,M⟩,
for any graph G and matching M, iff G has an augmenting path w.r.t. ⟨G,M⟩.

In the formalisation, this specification corresponds to the assumption on
find aug path in the locale find max match shown in Listing 9.

The correctness proof of Algorithm 1 is mainly constituted of Berge’s lemma [2],
which justifies the total correctness of most maximum cardinality matching algorithms.
Lemma 2. Consider two matchings w.r.t. G, M, and M′. For a connected component
K of the graph M ⊕ M′, if |M′ ∩ E(K)| > |M ∩ E(K)|, then E(K) can always be
arranged into γ, a simple path w.r.t. M⊕M′.

Proof sketch. We perform a case analysis on |K|. If |K| ≤ 1, the proof is trivial. For the
case when |K| > 1, we prove the theorem by contradiction. We consider the following
two cases.

Case 1 (γ is a cycle). First, from the fact that |M′ ∩ E(K)| > |M ∩ E(K)| and since
γ is an alternating path, we know that hd(γ) ∈ M′ and last(γ) ∈ M′, and the first
and last edges of γ are both members of M′. From the case assumption, we know
that hd(path) = last(γ). This implies that 2 ≤ d(M′, last(γ)), which is a contradiction
since M′ is a matching.

Case 2 (There is v ∈ γ \ {hd(γ), last(γ)} s.t. 3 ≤ d(M⊕M′, v)). Since v ∈ V(M⊕M′),
then we have that either 2 ≤ d(M, v) or 2 ≤ d(M′, v). In both cases we have a
contradiction, since both M and M′ are matchings.

Theorem 1 (Berge 1957 [2]). For a graph G, a matching M is maximum w.r.t. G iff
there is not an augmenting path γ w.r.t. ⟨G,M⟩.

Proof sketch. (⇒) Assume there is a matching M′, s.t. |M′| > |M|. Then there is a
connected component K ∈ K(M⊕M′) s.t. |M′∩E(K)| > |M∩E(K)|. From Lemma 2,
we have that all edges in K can be arranged in a path γ, s.t. the edges in γ alternate
in membership of M and M′. Also, the path will have more edges from M′ than it
does from M. That means that γ starts and ends at vertices that are not in M. Then
γ is an augmenting path w.r.t. ⟨G,M⟩.
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(⇐) Suppose there is an augmenting path γ w.r.t. ⟨G,M⟩. Then γ ⊕M is a match-
ing w.r.t. G and |γ ⊕ M| > |M|. We prove that by induction on γ. The proof is
straightforward for the cases where |γ| ≤ 2. For |γ| ≤ 2, we want to show that
the theorem holds for a path v1v2v3⌢γ. We apply the induction hypothesis with
M ≡ (M\ {{v2, v3}}) ∪ {{v1, v2}}. Since v1v2v3⌢γ is an alternating path w.r.t. M,
then v3⌢γ is also an alternating path w.r.t. M. Also recall that v3 ̸∈ V(M), by defi-
nition of M. Also last(v3⌢γ) ̸∈ V(M), from the induction premises and by definition
of M. Thus, by applying the induction hypothesis, we have that M ⊕ (v3⌢γ) is a
matching with more edges than M. Note that, since M = M ⊕ {{v1, v2}, {v2, v3}},
which follows from the definition ofM, we have thatM′⊕(v3⌢γ) = M⊕(v1v2v3⌢γ).
This, together with the facts that M⊕ (v3⌢γ) is a matching with more edges than
M, finish our proof.

Formalisation

The formalised statement of Berge’s lemma is shown in Listing 11.

theorem Berge:

2 assumes matching: "finite M" "matching M" "M ⊆ G"

shows

4 "(∃p. matching_augmenting_path M p ∧ path G p ∧ distinct p)

= (∃M' ⊆ G. matching M' ∧ card M < card M')"

Listing 11 Statement of Berge’s lemma in our formalisation.

Remark 2. Our proof of Berge’s lemma is similar to the exposition in Bondy and
Morty’s textbook [13, Chapter 16], which is a standard textbook on graph theory.
However, there is a significant difference when it comes to the proof Lemma 2, where
in the formal proof we have the extra task of showing that the case analysis performed
within that lemma is exhaustive, while all informal treatments this is not considered.
Informally, it is obvious that if a set of edges cannot be arranged into a path, it is
either a cycle or there is a vertex on which two edges are incident. In the formalisation,
on the other hand, that took a majority of the effort of proving Lemma 2. This is
an example of a theme that is recurring in formalising reasoning that uses appeals
to graphical or geometric intuition, and was documented by a number of authors,
including us [10, 11, 14, 15].

The functional correctness of Algorithm 1 is stated in the following corollary.
Corollary 1. Assume that Aug Path Search(G,M) satisfies Specification 1. Then,
for any graph G, Find Max Matching(G, ∅) is a maximum matching w.r.t. G.

Proof sketch. The statement follows from Theorem 1 and the fact that
Aug Path Search(G,M) satisfies Specification 1.
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lemma find_max_matching_dom:

2 assumes "matching M"" M ⊆ G"" finite M"

shows "find_max_matching_dom M"

Listing 12 The termination theorem of the top loop of the algorithm. An implicit assumption here
is that aug path search conforms to the assumptions in the locale header.

lemma find_max_matching_works:

2 shows "(find_max_matching {}) ⊆ G"

"matching (find_max_matching {})"

4 "∀M. matching M ∧ M ⊆ G =⇒
card M ≤ card (find_max_matching {})"

Listing 13 The functional correctness theorem of the top loop of the algorithm. Similarly to the
termination theorem, we assume aug path search conforms to the assumptions in the locale header.

The formalised functional correctness theorem is shown in Listing 13. The
theorem has three conclusions: the algorithm returns a subset of the graph, that
subset is a matching, and the cardinality of any other matching is bounded by
the size of the returned matching. Note that since it is proved within the locale
find max match, it has an implicit assumption that find aug path satisfies the spec-
ification find aug path spec. Also note that the algorithm is initialised with the
empty matching.

The formal proof of Corollary 1 is done by computation induction using the induc-
tion principle that results from the termination proof of that recursive function. We
use this methodology that is based on Isabelle/HOL’s function package [16] for mod-
elling and reasoning about all the major algorithms that we consider in this paper:
we model them as recursive functions and prove facts about them using computation
induction. For such recursive functions, the induction principle as well as the defining
equations are conditional on the input being one on which the function is well-defined
(e.g. inputs for which the predicate find max matching dom in Listing 12 applies).
The termination proof of the algorithm is based on showing that |G \ M| decreases
with every recursive call. The termination theorem is shown in Listing 12, where it is
shown that the algorithm terminates, if it starts with a finite matching.
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4 Handling Odd Cycles

Algorithm 2 Aug Path Search(G,M)

1: if Blossom Search(G,M) is an augmenting path w.r.t. ⟨G,M⟩ then
2: return Blossom Search(G,M)
3: else if Blossom Search(G,M) is a blossom ⟨γ,C⟩ w.r.t. ⟨G,M⟩ then
4: return refine(Aug Path Search(G/PC ,M/PC))
5: else
6: return no augmenting path found
7: end if

In this step we refine Aug Path Search, which is the function that com-
putes augmenting paths, into a more detailed description. In our exposition,
Aug Path Search, refined as Algorithm 2, is a function that handles odd cycles
found in the graph by removing them, which is the main insight underlying Edmonds’
blossom shrinking algorithm. It is again parametrically defined, where it depends on
the function Blossom Search. Aug Path Search either (i) returns an augment-
ing path if Blossom Search finds one (Line 2), (ii) removes (more on that later) an
odd cycle from the graph, by contracting it (Line 4) and then recursively continues
searching for augmenting paths, or (iii) reports that no augmenting paths exists, if
Blossom Search finds no odd cycles or augmenting paths (Line 6).

An important element here is how odd cycles are manipulated. Odd cycles found
by Blossom Search are returned in the form of blossoms, which is a central concept
in Edmonds’ algorithm. A blossom is a alternating path starting with an unmatched
vertex that is constituted of two parts: (i) the stem, which is a simple path and, (ii) an
odd cycle, which is a path with an odd number of edges, starting and ending at the
same vertex. For instance, vertices v1, v2, v3, v4, v5, and v3 in Figure 2 constitute a
blossom.

definition odd_cycle where

2 "odd_cycle p ≡
(length p ≥ 3) ∧ odd (length (edges_of_path p)) ∧

4 hd p = last p"

6 definition match_blossom where

"match_blossom M stem C ≡
8 alt_path M (stem @ C) ∧ distinct (stem @ (butlast C)) ∧

odd_cycle C ∧ hd (stem @ C) /∈ Vs M ∧
10 even (length (edges_of_path (stem @ [hd C])))"

12 abbreviation "blossom G M stem C ≡
path G (stem @ C) ∧ match_blossom M stem C"

Listing 14 The definition of a blossom. Note: edges of path is a function which, given a path,
returns the list of edges constituting the path
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Further Notation. A pair ⟨v1v2 . . . vi−1, vivi+1 . . . vn⟩ is a blossom w.r.t. a matching M
iff 1. vivi+1 . . . vn is an odd cycle, 2. v1v2 . . . vn is an alternating path w.r.t. M, and
3. v1 ̸∈ V(M). We refer to v1v2 . . . vi as the stem of the blossom and vi as the base of
the blossom. In many situations we have a pair ⟨v1v2 . . . vi−1, vivi+1 . . . vn⟩ which is a
blossom w.r.t. a matching M where v1v2 . . . vi−1vivi+1 . . . vn−1 is also a simple path
w.r.t. a graph G and {vn−1, vn} ∈ G. In this case we call it a blossom w.r.t. ⟨G,M⟩.
The formalisation of the notion of a blossom is shown in Listing 14. Furthermore, for
a function f and a set s, let fLsM denote the image of f on s. For a graph G, and a
function f , the quotient G/f is the set {fLeM | e ∈ G}. The formalisation of this notion
of quotient is shown in Listing 15.

definition quot_graph where

2 "quot_graph P G = {e'. ∃e∈G. e' = P ` e}"

4 abbreviation "quotG G ≡ (quot_graph P G) - {{u}}"

Listing 15 The formalisation of a quotient of a graph. Note: f ‘ s is the image of function f on a s.

4.1 Blossom Contraction: A Detailed Proof

We prove that contracting (i.e. shrinking) the odd cycle of a blossom preserves the
existence of an augmenting path, which is the second core result needed to prove the
validity of the blossom-shrinking algorithm, after Berge’s lemma. This result is the
core idea behind this algorithm and it is why the algorithm can compute maximum
cardinality matchings in polynomial time.
Theorem 2. Consider a graph G, a matching M w.r.t. G, a blossom ⟨stem, C⟩ w.r.t.
⟨G,M⟩, and a vertex u ̸∈ V(G). Let the function P be defined as P (v) ≡ if v ∈
s then v else u, where s ⊂ V(G). Then we have an augmenting path w.r.t. ⟨G,M⟩ iff
there is an augmenting path w.r.t. ⟨G/P,M/P ⟩.

Proof sketch. We prove the directions of the bi-implication separately.

(⇒) Let γ be the augmenting path w.r.t. ⟨G,M⟩. We prove this direction by
considering two main cases.

Case 1 (stem = ∅ (i.e. hd(C) ̸∈ M)). We have three further cases, which are clearly
exhaustive.

Case 1.i (|γ ∩ C| = 0). This case is trivial, since γ would also be an augmenting
path w.r.t. ⟨G/P,M/P ⟩.
Case 1.ii (|γ ∩ C| = 1). In this case, we have three further cases, each representing

a possible position of the odd cycle w.r.t. the augmenting path.

Case 1.ii.a (hd(C) ∈ γ \ {hd(γ), last(γ)}). In this case, we have a contradiction
because the base of the blossom will be in the matching, contradicting the assumption
of Case 1.
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Case 1.ii.b (hd(C) = last(γ)). Let γ′ be γ without last(γ), i.e. γ = γ′⌢last(γ). In
this case, the cycle is contracted to u. Also u ̸∈ V(M/P ). Thus γ′⌢u is an augmenting
path w.r.t. ⟨G/P,M/P ⟩.

Case 1.ii.c (hd(C) = hd(γ)). This case is symmetric with Case 1.ii.b.

Case 1.ii.d (hd(γ) ∈ (C \{hd(C)})). This leads to a contradiction because hd(γ) ̸∈
M, from the assumption that γ is an augmenting path w.r.t. ⟨G,M⟩, and every vertex
in C \ hd(C) is in V(M).

Case 1.ii.e (last(γ) ∈ (C \ {hd(C)})). This case is symmetric to Case 1.ii.d.

Case 1.ii.f ((γ\{hd(γ), last(γ)})∩(C\hd(C) ̸= ∅). Note that, from the definition of
a blossom, every vertex in the cycle, except for the base, is in M. From the assumption
of Case 1.ii, we have that 2 ≤ d(M, v), for some v ∈ C\{hd(C)}. This is a contradiction
because M is a matching.

Case 1.iii (1 < |γ ∩ C|). From the case assumption, there must be a vertex v s.t.
v ∈ (C \ {hd(C)}) and v ∈ γ. We will then have one of the Cases 1.ii.d, 1.ii.e, or 1.ii.f,
which all lead to a contradiction.

Case 2 (stem ̸= ∅). From the fact that γ is an augmenting path w.r.t. ⟨G,M⟩, we have
that M⊕ γ is a matching and |M| < |M⊕ γ|. We also have that hd(stem) ̸∈ M and
that last(stem) ∈ M, from the definition of blossom. Thus M ⊕ stem is a matching
too, but |M ⊕ stem| = |M|, and thus, from Berge’s lemma, there must be γ′ that is
an augmenting path w.r.t. ⟨G,M⊕ stem⟩. Accordingly, we can apply Case 1 to γ′ and
to the matching M⊕ stem.

(⇐) Let γ be the augmenting path w.r.t. ⟨G/P,M/P ⟩. We have two cases.

Case 1 (u ̸∈ γ). In this case we have that γ is an augmenting path w.r.t. ⟨G,M⟩,
which finishes our proof.

Case 2 (u ∈ γ). From the assumption of Case 2, there are paths γ1 and γ2, and
a vertex u, s.t. γ = γ1⌢u⌢γ2. Since γ is an augmenting path w.r.t. ⟨G/P,M/P ⟩,
then exactly one of two edges incident to u belongs to M/P , which gives rise to the
following two cases.

Case 2.i ({last(γ1), u} ∈ M/P ). From the case assumption (namely, {last(γ1), u} ∈
M/P ) and from the definition of the quotient operation on graphs, we know that there
is some vertex v1 ∈ C s.t. {last(γ1), v1} ∈ M. Since last(γ1) ̸∈ C and {last(γ1), v1} ∈
M, then v1 = hd(C). We also know that since {u, hd(γ2)} ∈ G/P , there must be
a vertex v2 s.t. v2 ∈ C and {v2, hd(γ2)} ∈ G. This means there are C1 and C2 s.t.
C = C1⌢v2⌢C2. We have two cases.

Case 2.i.a ({last(C1), v2} ∈ M). In this case, we have that γ1⌢rev(C2)⌢γ2 is an
augmenting path w.r.t. ⟨G,M⟩, which finishes our proof.

Case 2.i.b ({v2, hd(C2)} ∈ M). In this case, we have that γ1⌢C1⌢γ2 is an
augmenting path w.r.t. ⟨G,M⟩, which finishes our proof.

Case 2.ii ({hd(γ2), hd(C)} ∈ M/P ). This is symmetric with case Case 2.i.
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Formalisation

To formalise Theorem 2, we first declare the locale quot shown in Listing 16. This
locale makes clear the assumptions, under which odd cycles can be contracted: the odd
cycle has to be non-empty, and the odd cycle is contracted to a vertex that does not
occur in the graph outside of the odd cycle. This allows the odd cycle to be contracted
to a representative vertex from the odd cycle, which would allow for one of the more
efficient implementations of the algorithm.

locale pre_quot = choose sel + graph_abs E

2 for sel ::"'a set ⇒ 'a" and E::"'a set set"

4 locale quot = pre_quot sel E for sel E +

fixes s::"'a set" and u::'a
6 assumes good_quot_map: "u /∈ s" "s ⊂ Vs E"

8 abbreviation "P v ≡ (if v ∈ s then v else u)"

Listing 16 A locale fixing assumptions on the representative vertex u for contraction.

Now, recall the function refine that refines a quotient augmenting path to a concrete
one. Its formalisation is shown in Listing 17. The function refine takes an augmenting
path p in the quotient graph and returns it unchanged if it does not contain the vertex
u and deletes u and splits p into two paths p1 and p2 otherwise. In the latter case, p1
and p2 are passed to replace cycle. This function first defines two auxiliary paths
stem2p2 and p12stem using the function stem2vert path. stem2vert path with last
argument hd p2 uses choose con vert to find a neighbour of hd p2 on the cycle C.
It splits the cycle at this neighbour and then returns the path leading to the base
of the blossom starting with a matching edge. Finally, replace cycle concatenates
together p1, p2 and either stem2p2 and p12stem to obtain an augmenting path in the
concrete graph. This function has many possible execution paths, each equivalent to
the case analysis in backward direction of the proof of Theorem 2.
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fun find_pfx ::"('b ⇒ bool) ⇒ 'b list ⇒ 'b list" where

2 "find_pfx Q [] = []" |

"find_pfx Q (h # l) =

4 (if (Q h) then [h] else h # (find_pfx Q l))"

6 definition stem2vert_path where

"stem2vert_path C M v ≡
8 let

find_pfx ' =

10 (λC. find_pfx ((=) (choose_con_vert (set C) v)) C)

in

12 if (last (edges_of_path (find_pfx ' C)) ∈ M) then

(find_pfx ' C)

14 else

(find_pfx ' (rev C))"

16

definition replace_cycle where

18 "replace_cycle C M p1 p2 ≡
let stem2p2 = stem2vert_path C M (hd p2);

20 p12stem = stem2vert_path C M (last p1)

in

22 if p1 = [] then

stem2p2 @ p2

24 else

(if p2 = [] then

26 p12stem @ (rev p1)

else

28 (if {u, hd p2} /∈ quotG M then

p1 @ stem2p2 @ p2

30 else

(rev p2) @ p12stem @ (rev p1)))"

32

definition refine where

34 "refine C M p ≡
if (u ∈ set p) then

36 (replace_cycle C M (fst (pref_suf [] u p)) (snd (pref_suf

[] u p)))

else p"

Listing 17 The formalisation of refine.

The formal statement of Theorem 2 is shown in Listing 18. Similar to what we
mentioned in Remark 1, a lot of the effort to formally prove this theorem is dominated
by managing symmetries. One way to handle these symmetries is to devise lemmas
capturing them, like lemma path u p3 shown in Listing 19. That lemma covers a major
part of proving the four cases arising in Cases 2.i and 2.ii in the proof of Theorem 2.
However, despite devising many of these lemmas, the formal proof of this theorem was
around than 5K lines of proof script. This is because, although lemmas like that save a
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lot of repeated reasoning, it can still be cumbersome to prove that their preconditions
hold for all cases (e.g. when C is assigned with C1, C2, rev(C1), and rev(C2) from
Cases 2.i and 2.ii).

theorem refine:

2 assumes cycle: "odd_cycle C" "alt_path M C"

"distinct (tl C)" "path E C" and

4 quot_aug_path: "graph_augmenting_path (quotG E) (quotG M)

p'" and

matching: "matching M" "M ⊆ E" and

6 quot: "s = (Vs E) - set C"

shows "graph_augmenting_path E M (refine C M p')"
8

theorem aug_path_works_in_contraction:

10 assumes match_blossom: "blossom E M stem C" and

aug_path: "graph_augmenting_path E M p" and

12 matching: "matching M" "M ⊆ E" "finite M" and

quot: "s = (Vs E) - set C" "u /∈ Vs E"

14 shows "∃p'. graph_augmenting_path (quotG E) (quotG M) p'"

Listing 18 The formal statements of the two directions of Theorem 2.

have path_u_p3: "path (quotG E) (u # p3)"

2 if wx: "p = p1 @ x # p3" "x ∈ set C"

"∀x∈set p3. x /∈ set C" and

4 aug_path: "path E p" and

p3_subset_s: "set p3 ⊆ s" and

6 p3_nempty: "p3 ̸= []"

for p1 x p3 p

Listing 19 A lemma devised to prove symmetric cases in the proof of aug path works

in contraction.

4.2 The Algorithm

Finally, we formalise Algorithm 2 parametrically as shown in Listing 21. We model the
algorithm in Isabelle/HOL using a locale which parameterises the algorithm over the
function blos search which performs the search for blossoms or augmenting paths.
The function either returns an augmenting path or a blossom, which is formalised as
the algebraic data type match blossom res. In addition to being parameterised over
the function blos search, it is also parameterised over the two functions create vert

and sel, shown in Listing 7. Note that we instantiate both arguments P and s of the
locale quot to obtain the quotienting function quotG and the function for refining
augmenting paths refine.
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datatype 'a match_blossom_res =

2 Path "'a list"

| Blossom (stem_vs: "'a list") (cycle_vs: "'a list")

4

locale find_aug_path = choose + create_vert +

6 fixes blos_search ::"'a set set ⇒ 'a set set ⇒ ('a
match_blossom_res) option"

assumes

8 bloss_algo_complete:

" J graph_invar G; matching M; M ⊆ G;

10 (∃p. graph_augmenting_path G M p) K
=⇒ (∃blos_comp. blos_search G M = Some blos_comp)" and

12 bloss_algo_sound:

" J graph_invar G; matching M; M ⊆ G; blos_search G M = Some

(Path p) K =⇒
14 graph_augmenting_path G M p"

" J graph_invar G; matching M; M ⊆ G; blos_search G M = Some

(Blossom stem C) K =⇒
16 blossom G M stem C"

Listing 20 The locale parameterising the formalisation of the algorithm find aug path. Note: @
denotes list concatenation.

function find_aug_path where

2 "find_aug_path G M =

(case blos_search G M of Some match_blossom_res ⇒
4 case match_blossom_res of Path p ⇒ Some p

| Blossom stem cyc ⇒
6 let u = create_vert (Vs G);

s = Vs G - (set cyc);

8 quotG = quot.quotG s (create_vert (Vs G));

refine = quot.refine sel G s (create_vert (Vs

G)) cyc M

10 in (case find_aug_path (quotG G) (quotG M) of Some

p' ⇒ Some (refine p')
| _ ⇒ None)

12 | _ ⇒ None)"

Listing 21 Formalisation of Algorithm 2.

Correctness

To prove that Algorithm 2 is correct, we first precisely specify the properties expected
of Blossom Search, on which Algorithm 2 is parameterised.
Specification 2. For a graph G and a matching M w.r.t. G, there is a blossom or
an augmenting path w.r.t. ⟨G,M⟩ iff Blossom Search(G,M) is a blossom or an
augmenting path w.r.t. ⟨G,M⟩.
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Algorithm 3 Blossom Search(G,M)

1: if ∃e ∈ G.e ∩ V(M) = ∅ then
2: return Augmenting path choose {e | e ∈ G ∧ e ∩ V(M) = ∅}
3: else if compute alt path(G,M) = ⟨γ1, γ2⟩ then
4: if last γ1 ̸= last γ2 then
5: return Augmenting path (rev γ1)⌢γ2
6: else
7: ⟨γ′

1, γ
′
2⟩ = longest disj pref(γ1, γ2)

8: return Blossom ⟨rev(drop (|γ′
1| − 1) γ1), (rev γ′

1)⌢γ′
2⟩

9: end if
10: else
11: return No blossom or augmenting path found
12: end if

The functional correctness Algorithm 2 is stated as follows.
Corollary 2. Assume Blossom Search(G,M) satisfies Specification 2. Then
Aug Path Search satisfies Specification 1.

Proof sketch. From Theorem 2 and by computation induction.

Remark 3. Theorem 2 is used in most expositions of the blossom-shrinking algorithm.
In our proof for the forward direction (if an augmenting path exists w.r.t. ⟨G,M⟩, then
there is an augmenting path w.r.t. ⟨G/P,M/P ⟩, i.e. w.r.t. the quotients), we follow
a standard textbook approach (e.g. Lemma 10.25 in Korte and Vygen’s book [4]).
Our proof is, nonetheless, the only one we are aware of that explicitly pins down the
cases, at least among standard textbooks [3–5] and lecture notes available online. One
particular approach that is worth mentioning is that taken in LEDA [3] by Mehlhorn
and Näher. In their approach, they skip showing this direction completely, due to the
complexity of the case analysis and the fact that it was not fully performed in other
expositions. Instead, they replaced it with a claim, presumed to be much easier to
prove, that, if we can construct an odd set cover for G/P , i.e. a certificate can be
constructed showing that there is not an augmenting path w.r.t. ⟨G/P,M/P ⟩, then
there is a certificate showing that there is not an augmenting path w.r.t. ⟨G,M⟩.
Nonetheless, it turned out, when we tried to formalise that approach that we need a
case analysis that is more complex than the one we perform in the proof of Theorem 2.
Remark 4. In our proof for the backward direction (an augmenting path w.r.t. the
quotients can be lifted to an augmenting path w.r.t. the original graph) we define
an (almost) executable function refine that does the lifting. We took the choice of
explicitly defining that function with using it in an implementation of the algorithm
in mind. This is similar to the approach used in the informal proof of soundness of
the variant of the blossom-shrinking algorithm used in LEDA [3].

5 Computing Blossoms and Augmenting Paths

Here we take one further step in our refinement of the algorithm’s description,
where we give a more detailed description of the function Blossom Search (see
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Algorithm 3), which can compute augmenting paths or blossoms, if any exist in the
graph. The algorithm takes as input two alternating paths and returns either an
augmenting path or a blossom. The two given alternating paths have to satisfy a
number of conditions, and those conditions describe any such alternating paths that
result from the core search procedure of the algorithm. The algorithm is parameterised
over two functions: compute alt path and longest disj pref. The former is the core search
procedure of Edmonds’ blossom algorithm and the latter is a function that takes the
output of the former and uses it to return the stem of a blossom, if the two alternating
path returned by compute alt path represent a blossom.

In Isabelle/HOL, the definition of Blossom Search is shown in Listing 22. It
depends on the function longest disj pfx, whose definition as well as its correctness
statement are in Listing 23. It also depends on the function compute alt path. We use
a locale again to formalise Algorithm 3. That locale parameterises Blossom Search
on the function compute alt path that searches for alternating paths and poses the
soundness and completeness assumptions for that alternating path search function.
The locale assumptions assert that compute alt path conforms to Specification 3.

definition compute_match_blossom where

2 "compute_match_blossom ≡
(if (∃e. e ∈ unmatched_edges) then

4 let singleton_path = sel_unmatched in

Some (Path singleton_path)

6 else

case compute_alt_path

8 of Some (p1 ,p2) ⇒
(if (set p1 ∩ set p2 = {}) then

10 Some (Path ((rev p1) @ p2))

else

12 (let (pfx1 , pfx2) = longest_disj_pfx p1 p2 in

(Some (Blossom

14 (rev (drop (length (the pfx1)) p1))

(rev (the pfx1) @ (the pfx2))))))

16 | _ ⇒ None)"

Listing 22 Formalisation of Algorithm 3.
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fun longest_disj_pfx where

2 "longest_disj_pfx l1 [] = (None ,None)"

| "longest_disj_pfx [] l2 = (None ,None)"

4 | "longest_disj_pfx l1 (h#l2) =

(let l1_pfx = (find_pfx ((=) h) l1) in

6 if (last l1_pfx = h) then

(Some l1_pfx ,Some [h])

8 else (let

(l1_pfx ,l2_pfx) = (longest_disj_pfx l1 l2)

10 in

case l2_pfx of Some pfx2 ⇒
12 (l1_pfx ,Some (h#pfx2))

| _ ⇒ (l1_pfx , l2_pfx)))"

14

lemma common_pfxs_form_match_blossom ':
16 assumes

pfxs_are_pfxs:

18 "(Some pfx1 , Some pfx2) = longest_disj_pfx p1 p2" and

from_tree: "p1 = pfx1 @ p" "p2 = pfx2 @ p" and

20 alt_paths:

"alt_path M (hd p2 # p1)" "alt_path M (hd p1 # p2)"

22 "last p1 /∈ Vs M" and

hds_neq: "hd p1 ̸= hd p2" and

24 odd_lens: "odd (length p1)" "odd (length p2)" and

distinct: "distinct p1" "distinct p2" and

26 matching: "matching M"

shows

28 "match_blossom M

(rev (drop (length pfx1) p1))

30 (rev pfx1 @ pfx2)"

Listing 23 An algorithm to find the longest disjoint prefix of two lists and its correctness statement.

Further Notation. We first introduce some notions and notation. For a list xs, let |xs|
be the length of xs. For a list xs and a natural number n, let drop n xs denote the
list xs, but with the first n elements dropped. For a list xs, let x :: xs denote adding
an element x to the front of a list xs. For a non-empty list xs, let hd xs and last xs
denote the first and last elements of xs, respectively. Also, for a list xs, let rev xs
denote its reverse. For two lists xs1 and xs2, let xs1⌢xs2 denote their concatenation.
Also, let longest disj pref xs1 xs2 denote the pair of lists ⟨xs′1, xs′2⟩, s.t. xs1 = xs′1⌢xs
and xs2 = xs′2⌢xs, and if both xs′1 and xs′2 are disjoint except at their endpoints.
Listing 23 shows an implementation of the function. Note: this function is not always
well-defined, but it is always well-defined if both lists are paths in a tree starting at
the root, which is always the case for its inputs in our context here.
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Correctness

The hard part of reasoning about the correctness of Blossom Search is the specifi-
cation of the properties of the functions on which it is parameterised. For two paths
γ1 and γ2, a graph G, and a matching M consider the following properties:
P1 γ1 and γ2 are simple paths w.r.t. G.
P2 γ1 and γ2 alternating paths w.r.t. M.
P3 γ1 and γ2 are of odd length.
P4 last γ1 ̸∈ V(M).
P5 last γ2 ̸∈ V(M).
P6 {hd γ1, hd γ2} ∈ G.
P7 {hd γ1, hd γ2} ̸∈ M.
These properties are formalised in Listing 24.
Specification 3. The function compute alt path(G,M) returns two lists of vertices
⟨γ1, γ2⟩ s.t. both lists satisfy properties P1-P7 iff two lists of vertices satisfying those
properties exist.

For the second function, longest disj pref we directly define it and prove it correct
rather than devising a specification, mainly due its simplicity, as shown in Listing 23.
Lemma 3. Assume γ1 and γ2 satisfy properties P1-P7 and are both are disjoint, and
we have that last γ1 ̸= last γ2. Then (rev γ1)⌢γ2 is an augmenting path w.r.t. ⟨G,M⟩.

Proof sketch. The lemma follows from the following two facts.

Lemma 4. (rev γ1)⌢γ2 is an alternating path w.r.t. M.

Proof. From P4, we have that last E(γ1) ̸∈ M, and thus we have that hd E(rev γ1) ̸∈
M. Also, from P2, P3, and P5, we have that hd E(γ2) ∈ M. From that, in addition
to P2 and P7, we finish the proof. Also, from P4, and P5, we have that the first and
last vertices of (rev γ1)⌢γ2 are unmatched. Accordingly, we have that (rev γ1)⌢γ2 is
an augmenting path w.r.t. M.

Lemma 5. (rev γ1)⌢γ2 is a simple path w.r.t. G.

Proof. This follows from P1, P6, and since we assume that γ1 and γ2 are disjoint.

Lemma 6. If γ1 and γ2 are both 1. simple paths w.r.t. G, 2. alternating paths w.r.t.
M, and 3. of odd length, and if we have that 4. last γ1 = last γ2, 5. last γ1 ̸∈ V(M),
6. {hd γ1, hd γ2} ∈ G, 7. {hd γ1, hd γ2} ̸∈ M, and 8. ⟨γ′

1, γ
′
2⟩ = longest disj pref(γ1, γ2),

then ⟨rev(drop (|γ′
1| − 1) γ1), (rev γ

′
1)⌢γ′

2⟩is a blossom w.r.t. ⟨G,M⟩.

Proof sketch. The proof here is done using a similar construction to what we did in
the proof of Lemma 3.

Finally, the following Theorem shows Blossom Search is correct.
Theorem 3. Assume that compute alt path satisfies Specification 3. Then
Blossom Search satisfies Specification 2.

Proof sketch. The theorem follows from Lemma 6 and Lemma 3 and the definitions
of Specification 3 and Blossom Search.
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definition compute_alt_path_spec where

2 "compute_alt_path_spec G M compute_alt_path ≡
(∀p1 p2 pref1 x post1 pref2 post2.

4 compute_alt_path = Some (p1, p2) =⇒
p1 = pref1 @ x # post1 ∧ p2 = pref2 @ x # post2

6 =⇒ post1 = post2) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒

8 alt_path M (hd p1 # p2)) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒

10 alt_path M (hd p2 # p1)) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒

12 last p1 /∈ Vs M) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒

14 last p2 /∈ Vs M) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒

16 hd p1 ̸= hd p2) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒

18 odd (length p1)) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒

20 odd (length p2)) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒

22 distinct p1) ∧
(∀p1 p2.

24 compute_alt_path = Some (p1 , p2) =⇒ distinct p2) ∧
(∀p1 p2. compute_alt_path = Some (p1, p2) =⇒ path G p1) ∧

26 (∀p1 p2. compute_alt_path = Some(p1, p2) =⇒ path G p2) ∧
(∀p1 p2.

28 compute_alt_path = Some (p1 , p2) =⇒ {hd p1 , hd p2} ∈ G)"

30 locale match = graph_abs G for G +

fixes M

32 assumes matching: "matching M" "M ⊆ G"

34 locale compute_match_blossom ' = match G M + choose sel

for sel ::"'a set ⇒ 'a" and G M ::"'a set set" +

36

fixes compute_alt_path :: "(('a list × 'a list) option)"

38 assumes

compute_alt_path_spec:

40 "compute_alt_path_spec G M compute_alt_path" and

compute_alt_path_complete:

42 "(((∃p. path G p ∧ distinct p ∧
matching_augmenting_path M p)))

44 =⇒ (∃blos_comp. compute_alt_path = Some blos_comp)"

Listing 24 The specification of the correctness of the core search procedure.

Remark 5. The formal proofs of the above lemmas are largely straightforward. The
main difficulty is coming up with the precise properties, e.g. in Specification 3,
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Algorithm 4 compute alt path(G,M)

1: ex := ∅ // Set of examined edges

2: for v ∈ V(G) do
3: label v := None
4: parent v := None
5: end for
6: for v ∈ V(G) \ V(M) do
7: label v := ⟨u, even⟩
8: end for
9: while (G \ ex) ∩ {e | ∃v ∈ e, r ∈ V(G).label v = ⟨r, even⟩} ≠ ∅ do

10: // Choose a new edge and label it examined

11: {v1, v2} := choose (G \ ex) ∩ {{v1, v2} | ∃r.label v1 = ⟨r, even⟩}
12: ex := ex ∪ {{v1, v2}}
13: if label v2 = None then
14: // Grow the discovered set of edges from r by two

15: v3 := choose {v3 | {v2, v3} ∈ M}
16: ex := ex ∪ {{v2, v3}}
17: label v2 := ⟨r, odd⟩
18: label v3 := ⟨r, even⟩
19: parent v2 := v1
20: parent v3 := v2
21: else if ∃s ∈ V(G).label v2 = ⟨s, even⟩ then
22: // Return two paths from current edge’s tips to unmatched vertex(es)

23: return ⟨follow parent v1, follow parent v2⟩
24: end if
25: end while
26: return No paths found

which required many iterations between the correctness proof of Algorithm 3 and
Algorithm 4, which implements the assumed function compute alt path.

6 Searching for an Augmenting Path or a Blossom

Lastly, we refine the function compute alt path to a detailed algorithmic description
(see Algorithm 4). This algorithm performs an alternating tree search. The search aims
to either find an augmenting path or a blossom. It is done via growing alternating trees
rooted at unmatched vertices. The search is initialised by making each unmatched
vertex a root of an alternating tree; the matched nodes are in no tree initially. In an
alternating tree, vertices at an even depth are entered by a matching edge, vertices at
an odd depth are entered by a non-matching edge, and all leaves have even depth. In
each step of the search, one considers a vertex v1 of even depth that is incident to an
edge {v1, v2} that was not examined yet, s.t. there is {v2, v3} ∈ M. If v2 is not in a
tree yet, then one adds v2 (at an odd level) and v3 (at an even level). If v2 is already
in a tree and has an odd level then one does nothing as one simply has discovered
another odd length path to v2. If v2 is already in a tree and has an even level then one
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has either discovered an augmenting path (if v1 and v2 belong to trees with different
roots) or a blossom (if v1 and v2 belong to the same tree). If the function positively
terminates, i.e. finds two vertices with even labels, it returns two alternating paths by
ascending the two alternating trees to which the two vertices belong, where both paths
satisfy Properties P1-P7. This tree ascent is performed by the function follow . That
function takes a higher-order argument and a vertex. The higher-order argument is a
function that maps every vertex to another vertex, which is intended to be its parent
in a tree structure.

To formalise Algorithm 4 in Isabelle/HOL, we first formally define the function
follow , which follows a vertex’s parent, as shown in Listing 25. Again, we use a locale
to formalise that function, and that locale fixes the function parent mapping every
vertex to its parent in its respective tree. Note that the function follow is not well-
defined for all possible arguments. In particular, it is only well-defined if the relation
between pairs of vertices induced by the function parent is a well-founded relation.
This assumption on parent is a part of the locale’s definition.

definition follow_invar '::"('a ⇒ 'a option) ⇒ bool" where

2 "parent_spec parent ≡ wf {(x, y) |x y. (Some x = par y)}"

4 locale parent =

fixes parent ::"'a ⇒ 'a option" and

6 parent_rel ::"'a ⇒ 'a ⇒ bool"

assumes parent_rel:

8 "follow_invar ' parent"

10 function follow where

"follow v =

12 (case (parent v) of Some v' ⇒ v # (follow v')
| _ ⇒ [v])"

Listing 25 The definition of a function that ascends the search tree towards the root, returning the
traversed path.

Based on that, compute alt path is formalised as shown in Listing 28. Note that
we do not use a while combinator to represent the while loop: instead we formalise it
as a recursive function. In particular, we define it as a recursive function which takes
as arguments the variables representing the state of the while loop, namely, the set of
examined edges ex, the parent function par, and the labelling function flabel.
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definition if1 where

2 "if1 flabel ex v1 v2 v3 r =

({v1, v2} ∈ G - ex ∧ flabel v1 = Some (r, Even) ∧
4 flabel v2 = None ∧ {v2 , v3} ∈ M)"

6 definition if1_cond where

"if1_cond flabel ex =

8 (∃v1 v2 v3 r. if1 flabel ex v1 v2 v3 r)"

10 definition if2 where

"if2 flabel v1 v2 r r' =

12 ({v1 , v2} ∈ G ∧ flabel v1 = Some (r, Even) ∧
flabel v2 = Some (r', Even))"

14

definition if2_cond where "if2_cond flabel =

16 (∃v1 v2 r r'. if2 flabel v1 v2 r r')"

18 function compute_alt_path ::
"'a set set ⇒ ('a ⇒ 'a option) ⇒ ('a ⇒ ('a × label) option)

20 ⇒ (('a list × 'a list) option)"

where

22 "compute_alt_path ex par flabel =

(if if1_cond flabel ex then

24 let

(v1 ,v2 ,v3 ,r) = sel_if1 flabel ex;

26 ex ' = insert {v1 , v2} ex;

ex '' = insert {v2 , v3} ex ';
28 par ' = par(v2 := Some v1 , v3 := Some v2);

flabel ' =

30 flabel(v2 := Some (r, Odd), v3 := Some (r, Even));

return = compute_alt_path ex '' par ' flabel '
32 in

return

34 else if if2_cond flabel then

let

36 (v1 ,v2 ,r,r') = sel_if2 flabel;

return =

38 Some (parent.follow par v1, parent.follow par v2)

in

40 return

else

42 let

return = None

44 in

return)"

Listing 26 The definition of a function that constructs the search forest, which is the main search
procedure of Edmonds’ blossom shrinking algorithm. Note: f(x := v) denotes the point-wise update
of a function in Isabelle/HOL.
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Note that this function is also defined within a locale, shown in Listing 27. That
locale assumes nothing but a choice function that picks elements from finite sets.

locale match = graph_abs G for G+

2 fixes M

assumes matching: "matching M" "M ⊆ G"

4

locale compute_alt_path = match G M + choose sel

6 for G M::"'a set set" and sel ::"'a set ⇒ 'a"

Listing 27 Functions on which compute alt path is parameterised.

One last aspect of our formalisation of compute alt path is how we model nonde-
terministic choice and selection. As mentioned earlier we aimed to arrive at a final
algorithm with minimal assumptions on functions for nondeterministic computation.
We thus implement all needed nondeterministic computation using the basic assumed
nondeterminitic choice function. Listing 28 shows, as an example, how we nondeter-
ministically choose the vertices in the first execution path of the while-loop (i.e. the
path ending on Line 20).

definition

2 "sel_if1 flabel ex =

(let es =

4 D ∩ {(v1,v2)| v1 v2. {v1,v2} ∈ (G - ex) ∧
(∃r. flabel v1 = Some (r, Even)) ∧

6 flabel v2 = None ∧ v2 ∈ Vs M};

(v1 ,v2) = sel_pair es;

8 v3 = sel (neighbourhood M v2);

r = fst (the (flabel v1))

10 in (v1 ,v2 ,v3 ,r))"

12 lemma sel_if1_works:

assumes "if1_cond flabel ex"

14 "(v1 , v2 , v3 , r) = sel_if1 flabel ex"

shows "if1 flabel ex v1 v2 v3 r"

Listing 28 The definition of a function that nondeterministically chooses vertices and a root that
satisfy the conditions of the first execution branch of the while loop.

The functional correctness theorem of Algorithm 4, on the proof of which we spend
the rest of this section, is stated as follows.
Theorem 4. compute alt path satisfies Specification 3.
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6.1 Loop Invariants

Proving this theorem involves reasoning about a while-loop using loop invariants.
Nonetheless, since the while-loop involves a large number of variables in the state, and
those variables represent complex structures, e.g. parent, the loop invariants capturing
the interactions between all those variables are extensive. During the development of
the formal proof, we have identified the following loop-invariants to be sufficient to
prove Theorem 4.
Invariant 1. For any vertex v, if for some r, label v = ⟨r, even⟩, then the vertices in
the list follow parent v have labels that alternate between ⟨r, even⟩ and ⟨r, odd⟩.
Invariant 2. For any vertex v1, if for some r and some l, we have label v1 = ⟨r, l⟩,
then the vertex list v1v2 . . . vn returned by follow parent v1 has the following property:
if label vi = ⟨r, even⟩ and label vi+1 = ⟨r, odd⟩, for some r, then {vi, vi+1} ∈ M,
otherwise, {vi, vi+1} ̸∈ M.
Invariant 3. The relation induced by the function parent is well-founded.
Invariant 4. For any {v1, v2} ∈ M, label v1 = None iff label v2 = None.
Invariant 5. For any v1, if label v1 = None then parent v2 ̸= v1, for all v2.
Invariant 6. For any v, if label v ̸= None, then last (follow parent v) ̸∈ V(M).
Invariant 7. For any v, if label v ̸= None, then label (last (follow parent v)) =
⟨r, even⟩, for some r.
Invariant 8. For any {v1, v2} ∈ M, if label v1 ̸= None, then {v1, v2} ∈ ex.
Invariant 9. For any v, follow parent v is a simple path w.r.t. G.
Invariant 10. For any {v1, v2} ∈ M, label v1 = ⟨r, even⟩ iff label v2 = ⟨r, odd⟩.
Invariant 11. For all e ∈ ex, there are v ∈ e and r s.t. label v = ⟨r, odd⟩.
Invariant 12. For all e ∈ ex\, if v ∈ e, then label v = None.
Invariant 13. The set {v | ∃r. label v = ⟨r, odd⟩} is finite.
Invariant 14. |{v | ∃r. label v = ⟨r, odd⟩}| = |M ∩ ex|.
Invariant 15. For all v ∈ V(G), if label v = None, then there is e ∈ G \ ex s.t. v ∈ e.
Invariant 16. For all v ∈ V(G), if label v = ⟨r, odd⟩, then there is e ∈ G∩ex s.t. v ∈ e.

Proofs of those invariants require somewhat complex reasoning: they involve inter-
actions between induction (e.g. well-founded induction on parent) and the evolution of
the ’program state’, i.e. the values of the variables as the while-loop progresses with
its computation. We describe one of those formal proofs in some detail below to give
the reader an idea of how we did those proofs.
Further Notation. In an algorithm, we refer to the value of a variable x ’after’ executing
line i with xi.

Proof sketch of Invariant 1. The algorithm has only one execution branch where it
continues iterating, namely, when the condition on Line 13 holds. We show that if
Invariant 1 holds for label10 and parent10, then it holds for label20 and parent20. In
particular, we need to show that if, for any vertex v, label20 v = ⟨r, even⟩, then the
labels assigned by label20 to vertices of follow parent20 v alternate between ⟨r, even⟩
and ⟨r, odd⟩. The proof is by induction on follow parent20 v. We have the following
cases, two base cases and one step case.

Case 1 (follow parent20 v = ∅). This case is trivial.
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Case 2 (follow parent20 v = u, for some u). This case is also trivial since the
follow parent20 v has no edges.

Case 3 (follow parent20 v = u1u2⌢γ, for some u1 and u2). The proof can be performed
by the following case analysis.

Case 3.i (u2 = v2
20). We further analyse the following two cases.

Case 3.i.a (u1 = v3
20). First, we have that v = u1 from the definition of follow

and from the assumption of Case 3. This together with the assumption of Case 3.i
imply that v = v3

20.
We also have that {v220, v320} ∈ M, from Line 15, and the fact that neither

v2 and v3 change between Lines 16-20. Also note that from Line 13, we have that
label v2

20 = None. This, together with Invariant 4, imply that label v3
20 = None.

Thus, from Invariant 5, we have that parent u ̸= v3, for any u. Thus, {v320, v220} ∩
follow parent10v1 = ∅.

From Line 9 we know that label v1
20 = ⟨r, even⟩, for some r. Thus, since Invariant 1

holds at Line 10, we know that the labels of follow parent10 v1
20 alternate w.r.t.

label10. Since Lines 10-20 imply that parent10 v = parent20 v and label10 v = label20 v,
for all v ̸∈ {v220, v320}, and since {v220, v320} ∩ follow parent10v1 = ∅, then we have
that follow parent20 v1

20 alternate w.r.t. label20. This, together with the assignments
at Lines 17-20 imply that follow parent20 v3

20 alternate w.r.t. label20, which finishes
our proof.

Case 3.i.b (u1 ̸= v3
20). From the assumption of Case 3, we have that parent10 u1 =

v2
20, which is a contradiction from Invariant 5 and the condition in Line 13.

Case 3.ii (u1 = v2
20 and u2 = v1

20). This case is implied by Case 3.i since
follow parent20 v3

20 = v3
20⌢follow parent20 v2

20.

Case 3.iii ({u1, u2} ∩ {v220} = ∅). We perform the following case analysis.

Case 3.iii.a (v3
20 ∈ follow parent20 v). First, note that, from Line 20, we have

that parent20 v3
20 = v2

20. Thus, if v3
20 = u1, then we have that v2

20 = u2, which is
a contradiction from the assumption of Case 3.iii. Thus, we have that v3

20 ∈ u2⌢γ.
Note that from Invariants 4 and 5, Lines 13 and 15, we have that parent10 v ̸= v3

20,
for all v. Thus, we have a contradiction.

Case 3.iii.b (v3
20 ̸∈ follow parent20 v). Note that from Invariant 5, and Lines 13

and 15, we have that, if there is u ∈ u1u2⌢γ s.t. parent20 u, then u = v3
20, which

is a contradiction. Thus, v2 ̸∈ u1u2⌢γ. Thus for any u ∈ u1u2⌢γ, we have that
parent10 u = parent20 u and label10 u = label20 u. This finishes our proof, since
Invariant 1 holds for parent10 and label10.

6.2 Total Correctness Proof

Below we describe in some detail our formal total correctness proof of the search
algorithm. Although the algorithm has been treated by numerous authors, we believe
that the following proof is more detailed that any previous exposition.
Lemma 7. Algorithm 4 always terminates.
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Proof sketch. The termination of the algorithm is based on showing that |G \ ex|
decreases with every iteration of the while loop.

Lemma 8. If Algorithm 4 returns two paths then they satisfy properties P1-P7.

Proof sketch. First, from the definition of the algorithm, we know that the algorithm
returns (at Line 23) the two lists follow parent23 v1

23 and follow parent23 v2
23. Invari-

ant 3 implies that follow parent10 is well-defined for any vertex in the Graph, and
thus follow parent23 v1

23 and follow parent23 v2
23 are both well-defined. We now show

that they satisfy the properties P1-P7.
• P1 follows from Invariant 9 and since follow parent10 is well-defined.
• P2 follows from Invariants 1 and 2 and since follow parent10 is well-defined.
• From Line 11, we have that label10 v1

23 = even. From Invari-
ant 7 and since follow parent10 is well-defined, we have that
label10(last(follow parent10 v1

23)) = even. Since label10 = label23 and
parent10 = parent23, then label23(last(follow parent23 v1

23)) = even. Also, from
Invariant 1, we have that the vertices in label23(last(follow parent23 v1

23)) alter-
nate between labels of even and odd. From the properties of alternating lists, we
know that if vertices of a list alternate w.r.t. a predicate (in this case even/odd),
and the first and last vertex satisfy the same predicate (here even), then the
length of this list is odd. Thus, the length of γ1 is odd. Similarly, we show that
the length of γ2 is odd. This gives us P3.

• P4 and P5 follow from Invariant 6.
• P6 follow from Line 11.
• From Invariant 1, we have that, since label23 v1

23 = even, then the label of
the vertex occurring after v1

23 in follow parent23 v1
23, call it u1, is labelled as

odd. From Invariant 2, we thus have {v123, u1} ∈ M. Similarly, we have that
{v223, u2} ∈ M, where u2 is the vertex occurring in follow parent23 v2

23 after
v2

23. We thus have that {v123, v223} ̸∈ M, since no two matching edges can be
incident to the same vertex, meaning that we have P7.

Lemma 9. If there are two paths satisfying properties P1-P7, then Algorithm 4 returns
two paths.

The proof of this lemma depends on showing that we can construct a certificate
showing that no such paths exist, if the algorithm returns at Line 26. The certificate
is an odd set cover, defined as follows. For a set s ⊆ V(G), s.t. |s| = 2k + 1, for some
k, we define the capacity of s as follows:

cap(s) =

{
1 if k = 0

k otherwise.

For a set of edges E, we say s covers E iff s ∩ e ̸= ∅, for each e ∈ E, and k = 0.
Otherwise, s covers E iff

⋃
E ⊆ s. A set of sets OSC is an odd set cover of a graph

G iff for every s ∈ OSC, we have that |s| is odd and that for every e ∈ G, there is
s ∈ OSC s.t. s covers e. We have the following standard property of odd set covers.
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Proposition 3. If OSC is an odd set cover for a graph G, then, if M is a matching
w.r.t. G, we have that |M| ≤ |OSC|.
Lemma 10. Given a graph G and a matching M w.r.t. G, if there is an augmenting
path w.r.t. ⟨G,M⟩, then are two paths satisfying properties P1-P7.

Proof sketch. Let the augmenting path be called γ. First, note that any augmenting
path has at least three edges. Thus, there must be a u1, u2, u3, and γ2, s.t. γ =
u1u2u3⌢γ2. Two paths that are the required witness are u3u2v1 and rev(γ2).

Lemma 11. If Algorithm 4 returns at Line 26, then there is an odd set cover OSC
for G and |OSC| = |M|.

Proof sketch. Let OSC ≡ {{v} | label26 v = odd}. First, we have that OSC is an odd
set cover for ex, from the definition of odd set covers and from Invariant 11. Second,
since no two vertices in an edge can have the same label of odd or even, we have that
for any e ∈ G, there is v ∈ e s.t. label26 v = None or label26 v = odd. The rest of the
proof is via the following case analysis.

Case 1 (|M| = |ex|). From the case assumption and Invariant 15, we have that
label26 v ̸= None holds for any v ∈ V(G). Thus, every e ∈ G has v ∈ e s.t.
label26 v = odd. Accordingly, OSC is an odd set cover for G. From the case assump-
tion, in addition to Invariant 14, we have that |OSC| = |M|. Also, since, for every
s ∈ OSC, we have that |s| = 1, Proposition 3 implies that M is a maximum cardinality
matching. Thus, Lemma 10 finishes our proof.

Case 2 (|M\ex| = 1). From the case assumption, there is u1 and u2 s.t. {u1, u2} ∈ M\
ex. Since {u1, u2} ̸∈ ex and from Invariant 12, we have that label26 u1 = label26 u2 =
None. Let OSC′ be {{u1}} ∪OSC.

Note 1. For any e′ ∈ G \ ex, there exists u ∈ e′ s.t. {u} ∈ OSC′.

Proof sketch. We perform the proof by the following case analysis.

Case 2.i (e′ ∈ M). In this case, we have that e′ = {u1, u2} from the assumption of
Case 2. Our witness u is thus u1.

Case 2.ii (e′ ̸∈ M). There must be a u′ ∈ e′ s.t. label26 u′ = None or label26 u′ =
odd. We perform the following case analysis.

Case 2.ii.a (label26 u′ = odd). In this case, we have that {u′} ∈ OSC ⊆ OSC′, by
definitions of OSC and OSC′, which finishes our proof.

Case 2.ii.b (label26 u′ = None). There must be u′′ s.t. e′ = {u′, u′′}. We finish the
proof by the following case analysis.

Case 2.ii.b.I (label26 u′′ = None). In this case, from the for loop at Line 6 and
from the assumptions of Case 2.ii.b, we have that {u′, u′′} ∈ M, which contradicts
the assumption of Case 2.ii.

Case 2.ii.b.II (label26 u′′ = odd). In this case, u′′ is the required witness.

Case 2.ii.b.III (label26 u′′ = even). This case leads to a contradiction, since it
violates the termination assumption of the while loop at Line 9.
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From the above note, and since OSC is an odd set cover for ex, we have that OSC′

is an odd set cover for G. Now, we focus on the capacity of OSC′. We have the following

cap(OSC′) = |OSC′| since for all s ∈ OSC′, |s| = 1

= |OSC|+ 1 by definition

= |M ∩ ex|+ |M \ ex| from Invariant 14

= |(M∩ ex) ∪ (M\ ex)|
= |M|.

This finishes our proof.

Case 3 (2 ≤ |M\ ex|). From the case assumption, there must be u1 and u2, and M′,
s.t. M \ ex = {{u1, u2}} ∪ M′. First, note that {u1, u2} ∩ M′ = ∅, since M′ is also
a matching and since {u1, u2} ̸∈ M′. Let OSC′ denote {{u1}, {u2} ∪ V(M′)} ∪OSC.
We first show the following.

Note 2. For any e′ ∈ G \ ex, there exists s ∈ OSC′ s.t. e′ ⊆ s or there exists u ∈ e′ s.t.
{u} ∈ OSC′.

Proof sketch. Our proof is by case analysis.

Case 3.i (e′ = {u1, u2}). In this case, our proof follows since {u1} ∈ OSC′.

Case 3.ii (e′ ∈ M′). In this case, our proof follows since {u1} ∪ V(M′) ∈ OSC′ and
e′ ∈ M′.

Case 3.iii (e′ ̸∈ M). This is a similar case analysis to Case 2.ii.

Based on the above note, and since OSC is an odd set cover for ex, we have that
OSC′ is an odd set cover for G. Finally, we consider the capacity of OSC′.

cap(OSC′) = cap(OSC) + cap({{u1}, {u2} ∪ V(M′)}) since
⋃

{{u1}, {u2} ∪ V(M′)}

and
⋃

OSC are disjoint

= cap(OSC) + cap({{u1}}) + since u1 /∈
⋃

{{u2} ∪ V(M′)}

cap({{u2} ∪ V(M′)})
= |OSC|+ 1 + |M′| by definition of capacity

= |M ∩ ex|+ |M \ ex| from Invariant 14

= |(M∩ ex) ∪ (M\ ex)|
= |M|.

Case 4 (M ⊆ ex). In this case, we have that for any e ∈ M, there is u s.t. {u} ∈ OSC.
Also, for any e ∈ G \ ex, there is u s.t. {u} ∈ OSC, using a case analysis like Case 2.ii.
Thus, OSC is an odd set cover for G. SinceM ⊆ ex and from Invariant 14, we have that
|M| = |OSC|. Since for all s ∈ OSC, |s| = 1, we have that cap(OSC) = |OSC| = |M|,
which finishes our proof.
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Proof sketch of Lemma 9. We show the contrapositive, i.e. we show that if the algo-
rithm returns no paths (i.e. terminate at Line 26), then there is not a path satisfying
properties P1-P7. If the algorithm terminates at Line 26, based on Lemma 11, we can
construct an odd set cover OSC, s.t. cap(OSC) = |M|. From Proposition 3, we have
that M is a maximum cardinality matching. Thus there is not an augmenting path
w.r.t. ⟨G,M⟩, which, in addition to Lemma 10, finishes our proof.

Proof sketch of Theorem 4. The theorem follows from Lemmas 7, 8, and 9.

Remark 6. We note that, although Edmonds’ blossom shrinking algorithm has many
expositions in the literature, none of them, as far we have seen, have a detailed proof
of the odd set cover construction (Lemma 9). We believe that our work is the first that
provides a complete set of invariants and a detailed proof of the odd set cover construc-
tion. The closest exposition to our work, and which we use as an initial reference for our
work, is the LEDA book by Näher and Mehlhorn. There, as we mentioned earlier, the
authors assumed that the right-left direction of Theorem 2 is not needed and, accord-
ingly, they only have invariants equivalent to Invariants 1-8. We thus needed to devise
Invariants 9-16 from scratch, which are the invariants showing that the algorithm can
construct an odd set cover if the search fails to find two paths or a blossom. Similar
to Näher and Mehlhorn’s book, we did not find a detailed proof of this construction
in other standard textbooks [4, 5].

Formalisation

fun alt_labels_invar where

2 "alt_labels_invar flabel r [] = True"

| "alt_labels_invar flabel r [v] =

4 (flabel v = Some (r, Even))"

| "alt_labels_invar flabel r (v1 # v2 # vs) =

6 ((if (flabel v1 = Some (r, Even) ∧
flabel v2 = Some (r, Odd)) then

8 {v1 ,v2} ∈ M

else if (flabel v1 = Some (r, Odd) ∧
10 flabel v2 = Some (r, Even)) then

{v1 , v2} /∈ M

12 else undefined)

∧ alt_labels_invar flabel r (v2 #vs))"

Listing 29 A formalisation of Invariants 1 and 2.

The most immediate challenge to formalising the correctness proof of Algorithm 4
is to design the formalisation such that it is possible to effectively manage the proofs
for the invariants we identified, which are numerous, and combine them into proving
that the algorithm is totally correct. Formalising the invariants themselves is relatively
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straightforward, where we model invariants as predicates parameterised over the rel-
evant variables in the algorithm. For instance, Listing 29 shows the formal predicate
corresponding Invariants 1 and 2.

Proving that the invariants hold, on the other hand, is rather involved. We note
that in much of the previous work the focus was on automatic verification condition
generation from the invariants and the algorithm description. There one would state
one invariant for the loop, involving all interactions between the state variables. Most
verification conditions for that invariant are then automatically generated, and most
of the generated conditions would be discharged automatically The ones which are
not are either proved externally as lemmas or proved automatically by strengthening
the invariant.

In our setting, the first difference is that many of the invariants need substantial
abstract mathematical reasoning (see the proof of Invariant 1 for an example), which
makes automatic discharging of verification conditions impossible in practice. Also,
the standard approach would be infeasible here since the while-loop we consider is
complex and the interactions between state variables are captured in 16 invariants.
We thus structure the verification of invariants manually, where we try to prove every
invariant independently, and assume, as we need, more of the other invariants that we
previously identify, or create new invariants. Listing 30 shows the theorem we proved
for alt labels invar, showing that it is preserved in the recursive execution path
(i.e. the one ending in Line 20), and it shows the other invariants needed to prove
alt labels invar that holds. Lastly, we note that we use computation induction to
generate the verification conditions for us and Isabelle/HOL’s standard automation to
combine the invariants towards proving the final correctness theorem of the algorithm.

lemma alt_labels_invar_pres:

2 assumes

ass: "if1 flabel ex v1 v2 v3 r" and

4 invars:

"
∧
v r lab.

6 flabel v = Some (r, lab) =⇒
alt_labels_invar flabel r (parent.follow par v)"

8 "
∧
v r.

flabel v = Some (r, Even) =⇒
10 alt_list (λv. flabel v = Some (r, Even))

(λv. flabel v = Some (r, Odd))

12 (parent.follow par v)"

"parent_spec par"

14 "flabel_invar flabel"

"flabel_par_invar par flabel" and

16 inG: "∃lab. flabel ' v = Some (r', lab)" and

flabel ':
18 "flabel ' = (flabel(v2 7→ (r, Odd), v3 7→ (r, Even)))" and

par ': "par ' = (par(v2 7→ v1, v3 7→ v2))"

20 shows "alt_labels_invar flabel ' r' (parent.follow par ' v)"

Listing 30 Lemma showing preservation of Invariants 1 and 2.
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Other than proving that the invariants hold, we perform the rest of the formal
proof of correctness of Algorithm 4 by computation induction on compute alt path,
which is arduous but standard.

7 Discussion

Studying combinatorial optimisation from a formal perspective is a well-trodden path,
with authors studying flows [11, 17, 18], linear programming [19–21], and online match-
ing [10], to mention a few. The only previous authors to formally analyse maximum
cardinality matching algorithms in general graphs, as far as we are aware, are Alka-
ssar et al.[22], who formally verified a certificate checker for maximum matchings. In
that work, the formal mathematical part amounted to formally proving Proposition 3,
with the focus mainly on verifying an imperative implementation of the checker.

Studying matching has a deep history with the first results dating back to at least
the 19th century, when Petersen [23] stated Berge’s lemma. Since then, matching
theory has been intensely studied. This is mainly due to the wide practical applications,
like Kidney exchange [24], pupil-school matching, online advertising [25], etc.

In addition to practical applications, studying the different variants of matching
has contributed immensely to the theory of computing. This includes, for instance,
the realisation that polynomial time computation is a notion of efficient computation,
which is the underlying assumption of computational complexity theory as well as the
theory of efficient algorithms. This was first noted by Jack Edmonds in his seminal
paper describing the blossom shrinking algorithm [1], where he showed that matchings
have a rich mathematical structure that could be exploited to avoid brute-force search
for maximum cardinality matchings in general graphs. Other important contributions
of studying matchings is that it led to the design of the primal-dual paradigm [26], the
Isolating lemma by Mulmuley et al. [27], the complexity class #P [28], and the notion
of polyhedra for optimisation problems [29]. All of that makes it inherently interesting
to study matching theory and algorithms from a formal mathematical perspective.

We have formally verified Edmonds’ blossom shrinking algorithm, building a rea-
sonably rich formal mathematical library on matching and graphs, and arriving at the
first complete functional correctness proof of the algorithm, with all invariants stated
and proved, and with all case analyses covered. From a formalisation perspective, we
believe that tackling Edmonds’ blossom shrinking algorithm is highly relevant. First,
the algorithm has historical significance, as mentioned earlier, making studying it
from a formal mathematical perspective inherently valuable. Second, as far as we are
aware, the algorithm is conceptually more complex than any efficient (i.e. with worst-
case polynomial running time) algorithm that was treated formally, thus formalising
its functional correctness proof further shows the applicability as well as the utility,
e.g. to come up with new proofs, of theorem proving technology to complex efficient
algorithms.

There are other interesting avenues which we will pursue in the future. The first
chiefly practically interesting direction is obtaining an efficient verified implementa-
tion of the algorithm. This could be obtained in a relatively straightforward manner
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by applying standard methods of refinement [30], either top-down using Lammich’s
framework [31] or bottom-up using Greenway et al.’s framework [32].

Another direction is formalising the worst-case running time analysis of an imple-
mentation of the algorithm. There is a number of challenges to doing that. A naive
implementation would be O(|V(G)|4). A more interesting implementation [33] using
the union-find data structure can achieve O(|V(G)||G|α(|G|, |V(G)|)), where α is the
inverse Ackermann function. Achieving that would, in addition to deciding on a fitting
methodology for reasoning about running times, need a much more detailed specifica-
tion of the algorithm. Factors affecting the running time include: keeping and reusing
the information from the search performed by Algorithm 4 after shrinking blossoms,
and also carefully implementing the shrinking operation without the need to construct
the shrunken graph from scratch.

The most interesting future direction is devising a formal correctness proof for the
Micali-Vazirani [34] algorithm which has the fastest running time for maximum cardi-
nality matching, and the correctness of which is not yet established, despite many trials
at proving it [34–38]. Here, the algorithm achieves a running time of O(

√
|V(G)||G|)

by using shortest augmenting paths in phases, akin to Hopcroft-Karp’s algorithm [39]
for Maximum bipartite matching, as well as avoiding blossom shrinking altogether.
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[3] Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geomet-
ric Computing, (1999). http://www.mpi-sb.mpg.de/%7Emehlhorn/LEDAbook.html
Accessed 2023-10-09

[4] Korte, B., Vygen, J.: Combinatorial Optimization, (2012)

[5] Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, (2003)

[6] Abdulaziz, M., Mehlhorn, K., Nipkow, T.: Trustworthy graph algorithms (invited
paper). In: The 44th International Symposium on Mathematical Foundations of
Computer Science (MFCS) (2019)

[7] Paulson, L.C.: Isabelle: A Generic Theorem Prover, (1994)

[8] Noschinski, L.: A Graph Library for Isabelle. Math. Comput. Sci. (2015)

[9] Edmonds, C., Paulson, L.C.: Formal Probabilistic Methods for Combinatorial
Structures using the Lovász Local Lemma. In: Proceedings of the 13th ACM
SIGPLAN International Conference on Certified Programs And Proofs (2024)

39



[10] Abdulaziz, M., Madlener, C.: A Formal Analysis of RANKING. In: The 14th
Conference on Interactive Theorem Proving (ITP) (2023)

[11] Abdulaziz, M., Ammer, T.: A Formal Analysis of Capacity Scaling Algorithms
for Minimum Cost Flows. In: The 15th International Conference on Interactive
Theorem Proving (ITP 2024) (2024)

[12] Abdulaziz, M.: https://github.com/mabdula/Isabelle-Graph-Library (2024).
https://github.com/mabdula/Isabelle-Graph-Library Accessed 2024-10-15

[13] Bondy, J.A., Murty, U.S.R.: Graph Theory, (2008)

[14] Abdulaziz, M., Paulson, L.C.: An Isabelle/HOL Formalisation of Green’s
Theorem. Journal of Automated Reasoning (2019)

[15] Doorn, F., Massot, P., Nash, O.: Formalising the h-Principle and Sphere Eversion.
In: Proceedings of the 12th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2023, Boston, MA, USA, January 16-17, 2023 (2023)

[16] Krauss, A.: Automating recursive definitions and termination proofs in higher-
order logic. PhD thesis, Technical University Munich (2009). http://mediatum2.
ub.tum.de/doc/681651/document.pdf Accessed 2022-03-25

[17] Lee, G.: Correctnesss of ford-fulkerson’s maximum flow algorithm1. Formalized
Mathematics (2005)

[18] Lammich, P., Sefidgar, S.R.: Formalizing Network Flow Algorithms: A Refinement
Approach in Isabelle/HOL. J. Autom. Reason. (2019)

[19] Maric, F., Spasic, M., Thiemann, R.: An Incremental Simplex Algorithm with
Unsatisfiable Core Generation. Arch. Formal Proofs (2018). Accessed 2022-09-13

[20] Thiemann, R.: Duality of Linear Programming. Arch. Formal Proofs (2022).
Accessed 2023-10-28

[21] Bottesch, R., Haslbeck, M.W., Thiemann, R.: Verifying an Incremental Theory
Solver for Linear Arithmetic in Isabelle/HOL. In: Frontiers of Combining Systems
- 12th International Symposium, FroCoS 2019, London, UK, September 4-6, 2019,
Proceedings (2019)
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