
Proof-Producing Translation of Functional
Programs into a Time & Space Reasonable Model

Kevin Kappelmann, Fabian Huch⋆, Lukas Stevens, Mohammad Abdulaziz

King’s College London, Bush House 30 Aldwych, London WC2B 4BG, UK,
mohammad.abdulaziz@kcl.ac.uk

Technische Universität München, Boltzmannstrasse 3, Garching 85748, Germany,
kevin.kappelmann@tum.de, huch@in.tum.de, lukas.stevens@in.tum.de

Abstract. We present a semi-automated framework to construct and
reason about programs in a deeply-embedded while-language. The while-
language we consider is a simple computation model that can simulate
(and be simulated by) Turing Machines with a linear time and constant
space blow-up. Our framework derives while-programs from functional
programs written in a subset of Isabelle/HOL, namely tail-recursive func-
tions with first-order arguments and algebraic datatypes. As far as we
are aware, it is the first framework targeting a computation model that
is reasonable in time and space from a complexity-theoretic perspective.

Keywords: Program synthesis · Certified compilation · Interactive the-
orem proving · Complexity theory · Computation models

1 Introduction

A large array of mathematical results has been formlised in interactive theo-
rem provers. One example is theoretical computer science, where extensive re-
sults on algorithm correctness and computational objects, such as reductions,
were proven. Nonetheless, one type of results has proved to be particularly hard
to formalise: the construction and verification of algorithms modelled within a
deeply embedded computation model, such as a Turing machine. These con-
structions, however, are crucial to formalise the theory of efficient algorithms
and computational complexity theory as understood by practitioners of theo-
retical computing. In these fields, most results show that an algorithm runs in
polynomial time (worst-case, average case, etc.) when implemented as a program
within a reasonable computation model, i.e. a model that can simulate Turing
machines with a polynomial time and constant space overhead for all computa-
tions [35]. Previous work on reasoning about concrete programs within a deeply
embedded computation model did so in one of two ways:

(1) Automated synthesis of deeply embedded programs from functional pro-
grams in the theorem prover’s logic along with equivalence proofs [9, 28]. In

⋆ Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under the National Research Data Infrastructure – NFDI 52/1 – 501930651

the context of formalising complexity theory, this approach was only used
for a lambda calculus model so far [8]. In practical verification contexts, it
was used for a lambda calculus model [28] and assembly [27].

(2) Interactively proving properties of deeply embedded programs, mainly using
Hoare or other program logics. This approach is used in many practical ver-
ification settings [14, 16, 18] and has been applied to imperative languages,
including toy languages [31], C, Java, and Rust. In the context of formalis-
ing theoretical computer science, this approach was mainly used for Turing
machines [3, 11, 38], with few applications to lambda calculus [12, 33] and
partial recursive functions [5].

To formalise the theory of efficient algorithms and complexity theory, we suggest
the synthesis into a simple, imperative, and reasonable computation model.

Why? As others have noted [9, 13], reasoning about programs in a theorem
prover’s native language is significantly easier than reasoning about deeply em-
bedded programs. This is crucial when verifying complex algorithms. For ex-
ample, Gäher and Kunze [13] proved the Cook-Levin theorem with native Coq
programs, benefiting from existing tools and automation. In contrast, Balbach [4]
directly reasoned about Turing machines in Isabelle/HOL, requiring extensive
low-level reasoning. Others [25] note difficulties when reasoning about deeply-
embedded programs, e.g. missing warning messages and no static type checking.

Although automated synthesis methods exist for lambda calculi, we believe
it is worthwhile to develop them for an imperative model. The main reason
is that the lambda calculi used in previous work are less equivalent to Turing
machines than imperative models: they are only reasonable for computations
solving decision problems but not reasonable in space in general [10]. This limits
their applicability when analysing complexity-theoretic questions.

Finally, while there exists a synthesis-based method for x86-assembly in
Coq [27], it does not support user-defined datatypes, only allows pattern match-
ing and recursion with fixed recursion schemes, and its target language’s seman-
tics are vastly more complicated than needed for complexity-theoretic questions.

Contribution We present a framework that synthesises verified programs in a
simple while-language with finite machine words in Isabelle/HOL. Our frame-
work takes tail-recursive, first-order functions1 with algebraic datatypes as input.
We call this fragment HOLTC. Given a HOLTC function f , our proof-producing
metaprogram synthesises a related HOLTC function which only operates on nat-
ural numbers. We call this HOLTC fragment HOLTCN.

The resulting HOLTCN function fTCN is compiled into a program p of our
deeply embedded, imperative language IMPTC, which supports function calls and
tail-recursion. We provide automation to interactively prove the correspondence
between fTCN and p. In all examples we tried, the proofs were automatic. Finally,
a verified chain of compilers in Isabelle/HOL translates IMPTC to our target
1 Although the framework does not support higher-order functions, each first-order

instance of such a function can be compiled as described in Section 4.

2

HOLTC HOLTCN

IMPTCIMP−

proof-producing metaprogram

(mostly) automatic deep embedding
verified compilers

Fig. 1: Compilation pipeline from HOLTC functions to IMP− programs.

machine language IMP−. Fig. 1 gives an overview. The blow-up introduced by
each compiler is linear in the execution time, except for the last step, where it
is quadratic.

The target language only has one-bit-wide registers and only allows compar-
ison to zero as well as bit assignments. Both operations take constant time. This
is in addition to the regular program constructs of if-then-else and while-loops.
Hence it is clear that IMP− is reasonable with respect to memory and time.

Availability This article’s supplementary material2 includes the formalisation
and a guide linking all definitions, results, and examples to their counterpart
in the formalisation. Theorems 1 and 6–8 and all underlying sub-results are
formalised in Isabelle/HOL. Other proofs are provided in the appendix.

2 Preliminaries

We built our framework in Isabelle/HOL [32], but our approach could be followed
in any simple type theory (higher-order logic) [6] or more expressive foundation.
We use standard lambda calculi syntax, i.e. t ::= λx. t | t1 t2 | x | f , where λx. t
denotes function abstractions, t1 t2 function applications, x bound variables, and
f functions with defining equations f = λ #»x . t. We write t : α for ”t has type α”.
We use vector notation for n-ary applications, abstractions, and inputs:

f #»x ≡ f x1 · · ·xn λ #»x . t ≡ λx1 · · ·xn. t (1)
»

fi xi ≡ (f1 x1) · · · (fn xn)
#»α ⇒ α ≡ α1 ⇒ · · ·αn ⇒ α (2)

A function f : #»α ⇒ α is called higher-order if some αi is a function type.
Otherwise, it is called first-order. An application f #»x : α is called higher-order
if α is a function type. Otherwise, it is called first-order. An algebraic datatype
(ADT) #»α d = C1

»α1 | · · · | Cn
»αn is a possibly recursive sum type of product

types with constructors Ci :
#»αi ⇒ #»α d and case combinator cased : (# »α1 ⇒ α)⇒

· · · ⇒ (# »αn ⇒ α)⇒ #»α d⇒ α.
Our framework takes as an input language tail-recursive, first-order functions

f = λ #»x . t, where #»x are the arguments bound in the body t. The body may
use other such functions and ADT functions in first-order applications. Fig. 2
shows the grammar for recursive, first-order function bodies. Our input language
HOLTC is the subset where each recursive call f #»

t is in tail-position.
2 swh:1:dir:0885d0653246b8b2e81f168ed4a596d29200deed

3

https://archive.softwareheritage.org/swh:1:dir:0885d0653246b8b2e81f168ed4a596d29200deed

t ::= letx = t1 in t2 (bind t1 to x in t2)
| (cased t of # »x1 ⇒ t1 | · · · | # »xn ⇒ tn) (case combinator of ADT #»α d)

| h #»
t (first-order application)

h ::= x | g | f (bound variable x, function g, or f itself)

Fig. 2: Grammar for body t of a first-order function f = λ #»x . t with ADTs.

JCnKs ≡ n, JR rKs ≡ s r

(a) Evaluation of atoms A.

JA1 ⊗A2Ks ≡ JA1Ks ⊗ JA2Ks, for ⊗ ∈ {+,−}

(b) Evaluation rules for arithmetic expressions.

Assign
s′ = s(r := JaKs)

(r ← a, s)⇒C s′
IfT

s r ̸= 0 (p1, s)⇒n s′

(IF r THEN p1 ELSE p2, s)⇒n+C s′

Seq
(p1, s)⇒n1 s′ (p2, s

′)⇒n2 s′′

(p1 ; p2, s)⇒n1+n2+C s′′
IfF

s r = 0 (p2, s)⇒n s′

(IF r THEN p1 ELSE p2, s)⇒n+C s′

(c) Execution relation for commands, where each C is a fixed, non-negative constant.

Fig. 3: Semantics shared by our IMP-languages, excluding the final IMP−.

We use several deeply-embedded, deterministic languages based on the im-
perative language IMP from Winskel’s book [37], which is well-studied in formal
verification [30, 34]. Our IMP languages operate on a state of type string ⇒ val.
Terms of type string are called registers and terms of type val are called values.
The registers in a program p are denoted by regs p. As a computation model,
IMP allows simple reasoning about space since there is no indirect memory ad-
dressing – only registers occurring in a program can be accessed. In our final
model, IMP−, values are single bits, making the space usage bounded by regs p.
We define IMP− in Section 5.3, and a summary of all IMP languages can be found
in Appendix D. Here, we describe the intermediate languages used during compi-
lation. They use values of type N and consist of atoms, (arithmetic) expressions
and (imperative) commands. Every atom is also an arithmetic expression.

We now define the semantics. With JAKs and JaKs we denote the evaluation
(returning a natural number) of an atom A and expression a, respectively, under
state s, defined by the rules in Figs. 3(a) and 3(b). With tp ⊢ (p, s) ⇒n

R s′

we denote that in context of the program tp,3 the program p started from s
terminates in at most n steps with state s′′ such that s′ r = s′′ r for all r ∈ R:(

tp ⊢ (p, s)⇒n
R s′

)
≡ ∃n′ s′′. tp ⊢ (p, s)⇒n′

s′′ ∧ ∀r ∈ R. s′ r = s′′ r ∧ n′ ≤ n,

3 The context is only relevant for recursive calls in Section 4.

4

where⇒n is the (big-step) execution relation, defined inductively using the rules
from Fig. 3(c) along with the language-specific rules specified in their respective
sections. In rule Assign, the state s is updated at register r using the state
update notation s(r := v) ≡ λr′. if r = r′ then v else s r′. If we are only interested
in a single return register r, we write(

tp ⊢ (p, s)⇒r v
)
≡ ∃s′.

(
tp ⊢ (p, s)⇒ s′ ∧ s′ r = v

)
.

To simplify notation, we omit “. . . ⊢” if the context is irrelevant, R if the program
terminates exactly with state s′, and n if the number of steps is irrelevant.

One may question why rule Assign only takes constant, and not logarith-
mic, time. This is merely for simplicity and makes no difference for polynomial
time considerations since logarithmic space usage (i.e. space usage in a binary
encoding of N) is bounded by time in all intermediate IMP languages, as shown
in Theorem 1. For this, let amax denote the largest constant in an expression a,
pmax the largest constant in a program p, and smax ≡ max {s r | r : string}.

Theorem 1. If max {smax, pmax} < 2w and (p, s)⇒n s′, then s′max < 2w+n.

Proof sketch. The proof is by induction over the execution relation. In case of an
assignment, the maximum size can at most double. In other cases, the claim holds
by applying the induction hypothesis, followed by algebraic manipulation.

3 HOL(TC) to HOL(TC)N

This section describes the proof-producing translation of HOLTC functions into
equivalent HOLTCN functions. More generally, our translation applies to any
HOL function f with ADTs, producing a HOLN function fN that operates only on
natural numbers while preserving tail-recursiveness and first-order applications.

Intuitively, the function f and its translation fN should compute the same
values for the same inputs, up to encoding and decoding. Our method is based
on a technique called transport, which, intuitively, takes objects of one type
and derives that “corresponding” objects exist of another type, synthesising the
latter objects as necessary. To formalise this correspondence, we first review
some concepts on relations.

Definition 1. A relation on α and β is a function of type α⇒ β ⇒ bool. Two
functions f, g are related from R to S if they map R-related inputs to S-related
outputs, written (R ⇛ S) f g ≡ ∀x y.R x y −→ S (f x) (g y). Repeated relations
are abbreviated as (Rn ⇛ S) ≡ (R ⇛ · · ·⇛ R ⇛ S), i.e. R repeated n-times.

We can now define the desired relation between f and fN.

Definition 2. A type α is encodable if there are functions natify : α ⇒ N and
denatify : N⇒ α such that denatify (natify x) = x for all x.4

4 In the formalisation, natify, denatify are overloaded as part of a typeclass.

5

We say that n : N and x : α are (RN-)related if they represent the same value:
RNnx ≡ n = natify x. A number n is well-encoded (with respect to α) if RNnx
holds for some x : α. We lift this relation to functions and say that fN : αN and
f : α are RN-related if αRN fN f , where αN, αRN are defined recursively:

(α⇒ β)N ≡ αN ⇒ βN, αN ≡ N, (α⇒ β)RN ≡ αRN ⇛ βRN, αRN ≡ RN.

Objective 1. Given a HOL function f , synthesise a RN-related HOLN term fN.
Moreover, the synthesis preserves tail-recursiveness and first-order applications
on well-encoded inputs.

We achieve this in two steps: First, we encode the datatypes used by f
(Section 3.1). Second, we synthesise a HOLN term fN related to f (Section 3.2).

3.1 Encoding of Datatypes

Let #»α d = C1
»α1 | · · · | Cn

»αn be an ADT with ai ≡ | #»αi|. We want to encode
#»α d according to Def. 2. Assuming that all α ∈ # »α1 ∪ · · · ∪ # »αn are encoded or
α = #»α d, the existence of suitable en- and decoding functions is straightforward.
Following Gordon’s approach [15] to encode the type of lists, each value Ci

#»x
is encoded as a tagged and nested pair. Datatypes are encoded recursively this
way, using natural numbers as the base type:

Definition 3. Fix an injective pairing function pair : N2 ⇒ N with inverses
fst, snd, i.e. fst (pair nm) = n and snd (pair nm) = m. We define CN

i : Nai ⇒ N
by CN

i
#»x ≡ pair i

(
if ai = 0 then 0 else (pair x1 (pair x2(· · · (pair xai−1 xai

) · · ·)
)
. For

each i, j, we define the selector selecti,j x ≡ (if j < i then fst else id) (sndj x). Us-
ing the selector, we can define a companion caseNd for the case combinator cased
using a nested if-then-else construction. Details can be found in Appendix A.1.

These functions suffice to show that #»α t is encodable:

Theorem 2. #»α d = C1
»α1 | · · · | Cn

»αn is encodable if all α ∈ # »α1 ∪ · · · ∪ # »αn are
encoded or α = #»α d. Also, for all 1 ≤ i ≤ n, 1 ≤ j ≤ ai and relations R, we have

(RNai ⇛ RN)CN
i Ci, RNn (Ci

#»x) =⇒ RN (selectai,jn)xj ,(
(RNa1 ⇛ R) ⇛ · · ·⇛ (RNan ⇛ R) ⇛ RN ⇛ R

)
caseNd cased.

The described pipeline is fully automatic in our framework. An example
application can be found in Appendix A.1. We note that our underlying pairing
function is the Cantor pairing function, which results in a number computable
in time polynomial in the sizes of the two numbers in the encoded pair.

3.2 Synthesis of HOLN Functions

Let f = λ #»x . t be a HOL function of type α. We aim for Objective 1. For this,
we can assume that all ADTs in α are encoded and every user-specified function
g ̸= f in t is already compiled – and thus RN-related to some gN.

6

Our approach combines black-box and white-box transports [17, 20, 36] in a
novel way, to the best of our knowledge. Both kinds of transport take a term
t : α and a relation R as input and synthesise a term t′ together with a proof
that R t′ t. While black-box transports do so using only the structure of α and
R, white-box transports also use the structure of t.

Our approach is as follows: (1) Use black-box transport to obtain a function
fN that is RN-related to f . (2) Use white-box transport to obtain a term (λ #»x . t)
that uses fN and which is also RN-related to f . (3) Derive the recursive equation
fN = (λ #»x . t) using that RN is left-unique. The use of black-box transports
relies on the fact that RN can be used as a relation by Transport [20]:

Theorem 3 (Blackbox-Transport [20]). RN, natify, and denatify form a
partial Galois equivalence. Thus, there is some fN that is RN-related to f .

In the formalisation, we use the Transport prototype [19] to obtain fN.
Since the black-box transport disregards the structure of t, Theorem 3 may not
preserve tail-recursiveness and first-order applications. To derive an equation
fN = λ

»

xN. tN structurally related to the one of f , we use white-box transport:

Definition 4. The white-box-transport of λ #»x . t replaces every subterm by its
RN-related companion. It is defined recursively by

(λ #»x . s) ≡ λ
»

xN. s , (t1 t2) ≡ t1 t2 , xi ≡ xN
i , g ≡ gN, f ≡ fN.

Theorem 4 (Whitebox-Transport [17]). (λ #»x . t) and λ #»x . t are RN-related
and white-box transports preserve tail-recursiveness and first-order applications.

Theorem 5. If
»

RNxN
i xi then fN # »

xN = t .

Proof. We have RN (fN # »

xN) (f #»x) and RN (t) (f #»x) by Theorems 3 and 4. More-
over, RN is left-unique by Def. 2. Thus fN # »

xN = t .

Theorems 3–5 show that we have achieved Objective 1. The described syn-
thesis is fully automatic in our framework. An example is shown in Fig. 4.

4 HOLTCN to IMPTC

We next describe the deep embedding from HOLTCN to IMPTC. Fig. 5 shows
the IMPTC-specific commands and their semantics, extending those in Fig. 3(c).
Notably, IMPTC supports calls of IMPW programs (defined in Section 5.2) and
tail-recursion. It also supports if-then-elses but no case combinators. Since every
caseNd is defined as a nested if-then-else construction (Def. 3), this is sufficient.

To relate a HOLTCN function fTCN, with its conditional (recursive) equation
»

RNxN
i xi =⇒ fTCN # »

xN = tTCN, to an IMPTC program p, we presume injective
5 There is a commmand in Isabelle/HOL that turns functions specified by multiple

equations into an equivalent definition consisting of only one equation.

7

Listing 1.1 Input function from the user.
count a xs n = case xs of [] ⇒ n
| x # xs ⇒ count a xs

(if x = a then Suc n else n)

Listing 1.2 Constant countN and related-
ness theorem from black-box transport.

(RN ⇛ RN ⇛ RN ⇛ RN) countN count

Listing 1.3 White-box transport theorem.
(RN ⇛ RN ⇛ RN ⇛ RN)
(λaN xsN nN. caseN xsN of []N ⇒ nN

| xN #N xsN ⇒ countN aN xsN

(if xN = aN then SucN nN else nN))
count

Listing 1.4 Final tail-recursive equation.

RN aN a ∧ RN xsN xs ∧ RN nN n =⇒
countN aN xsN nN = caseN xsN of

[]N ⇒ nN

| xN #N xsN ⇒ countN aN xsN

(if xN = aN then SucN nN else nN)

Fig. 4: For the user-specified function5 count in Listing 1.1, we obtain a related
constant countN in Listing 1.2 using Theorem 3. Using Theorem 4, we obtain
a second term related to count in Listing 1.3. Using that RN is left-unique (cf.
Theorem 5), we derive the desired equation for countN in Listing 1.4.

Call
(pc, s)⇒n

r v s′ = s(r := v)

p ⊢ (CALL pc RETURN r, s)⇒n s′
Rec

p ⊢ (p, s)⇒n s′

p ⊢ (RECURSE, s)⇒n+C s′

Fig. 5: Execution relation of IMPTC-specific commands.

functions arg, ret such that (1) argf,i returns a unique name for the i-th argument
of f and (2) retf returns a unique name for the result computed by f .

We focus on total, functional correctness of p in this work (proving concrete
time bounds for p is left as future work, see Section 6): From any state s with
well-encoded inputs # »s argf,i, the program p terminates and the value in return
register retf is equal to fTCN # »s argf,i. Formally, our objective is:

Objective 2. Given a HOLTCN function fTCN, compile it to an IMPTC program
p such that p ⊢ (p, s)⇒retf fTCN # »s argf,i whenever

»

RN (s argf,i)xi.

The deep embedding has two steps: (1) Compile fTCN into an IMPTC pro-
gram p (Section 4.1) and (2) prove the equivalence between fTCN and p using
custom-built automation (Section 4.2). The automation uses symbolic execution,
normalises the (otherwise incomprehensible) program state such that it becomes
amenable to automatic proof, and discharges well-encodedness side-conditions.

Note on Higher-Order Functions Since IMPTC does not support higher-order
functions, we assume first-order functions as input for our framework. Never-
theless, each first-order instance of a higher-order function can be compiled sys-
tematically with our framework. We demonstrate this by means of an example.
More cases can be found in the formalisation:

8

JIf t1 t2 t3Kbr ≡ Jt1Kbx ; IF x THEN Jt2Kbr ELSE Jt3Kbr (fresh x)

JLet t1 t2Kbr ≡ Jt1Kbx ; Jt2K
x#b
r (fresh x)

JLetBoundnKbr ≡ r ← b !n

JArgnKbr ≡ r ← argf,n

JNumbernKbr ≡ r ← n

JCall g [t1, . . . , tm]Kbr ≡ Jt1Kbx1
; . . . ; JtmKbxm

; (fresh x1, . . . , xm)

argg,1 ← x1 ; . . . ; argg,m ← xm ;

CALL gIMP
RETURN retg ; r ← retg (gIMP registered for g)

JRecurse [t1, . . . , tk]Kbr ≡ Jt1Kbx1
; . . . ; JtkKbxk

(fresh x1, . . . , xk)

argf,1 ← x1 ; . . . ; argf,k ← xk ; RECURSE

Fig. 6: The compiler from the HOLTCN representation to IMPTC. Term t1 in
If t1 t2 t3 denotes the condition t1 ̸= 0, Let t1 t2 binds t1 to the first de Bruijn
index in t2, LetBound i denotes the variable bound by the i-th enclosing Let,
and Arg i the i-th argument of f , i.e. xi.

Example 1. Consider the iteration function of type (α⇒ α)⇒ N⇒ α⇒ α:

fn x ≡ casen of 0⇒ x | n+ 1⇒ fn (f x). (3)

This function cannot be compiled as it is. However, every first-order instance,
e.g. sndj as used in the definition of selecti,j (Def. 3), can be compiled. To do
so, we define powsndn ≡ sndn. We then instantiate Eq. (3) with f = snd and
fold the definition of powsnd to obtain powsndnx = casen of 0 ⇒ x | n + 1 ⇒
powsndn (sndx). This equation can then be compiled with our framework.

4.1 Compilation to IMPTC

We compile fTCN # »

xN = tTCN to an IMPTC program p in two steps. For ease of
notation, we drop the superscript and just write f and t below.

First, we parse t into a metaprogram datatype resembling HOLTCN.6 Second,
we compile the parsed term to an IMPTC program, as shown in Fig. 6. We denote
the compilation by JtKbr, where b is a list of registers holding values of terms bound
by enclosing Let bindings and r is the register that will hold the program’s result.

For a call Call g [t1, . . . , tm], the compiler retrieves the registered IMPW im-
plementation gIMP of g. For the primitives equality, addition, and subtraction,
manual implementations must be provided to the compiler. The compiler gener-
ates fresh register names when needed, namely to compile Let bindings, to store
6 While the datatype allows recursive calls in non-tail positions, the compiler rejects

such terms using a syntactic check.

9

Update
JaKs ; v

s(r := JaKs); s(r := v)
Const

JCnKs ;n
Reg

s r; v

JR rKs ; v

Hit
r = r′

s(r := v) r′ ; v
Cont

r ̸= r′ s r′ ; v′

s(r := v) r′ ; v′
Arith

JA1Ks ; v1 JA2Ks ; v2

JA1 ⊗A2Ks ; v1 ⊗ v2

Fig. 7: State normalisation rules.

the value of If conditions, and to save function arguments in temporary registers
to prevent them from being overwritten. For example, in Call g [t1, . . . , tm], argu-
ment registers could be overwritten if another call of g appears within t1, . . . , tm.

In summary, we parse t into a term t′ of the metaprogram datatype and
compile t′ to the IMPTC program p ≡ Jt′K[]retf .

4.2 Correctness Proofs

Since the compiler to IMPTC is a metaprogram, its correctness cannot be proven
in Isabelle/HOL. Instead, the correctness of each compiled program p must be
verified individually through automation (a process sometimes called “certified
extraction”), which we describe next.

First, p is normalised such that no recursive constructor (sequences and if-
then-elses) appears on the left of a sequence. This simplifies the implementation,
but shall not concern us any further (for details see Appendix B.2). The automa-
tion proceed as follows:

(1) If f is recursive, start an induction proof on #»x using the induction rule of f .
(2) Symbolically run p to completion or until a recursive call is encountered. Let

s′ be the end state.
(3) Run fTCN to completion with result r or until a recursive call fTCN #»y is

encountered.
(4) If both computations ran to completion, prove s′ retf = r. Otherwise, prove

»

s′ argf,i =
#»y and conclude using the inductive hypothesis.

To run p, we use the execution rules from Figs. 3(c) and 5 (specialised to single
return registers)7 and the correctness theorems of subprograms. Each update
to the IMPTC state is normalised with the rules from Fig. 7 to (1) to simplify
the proof state for interactive proofs and (2) to speed up the automation. The
automation eliminates cases where p and fTCN took different execution branches.

Since our correctness theorems are conditional, the inductive hypothesis and
the subprograms’ correctness theorems are conditional too. Whenever they are
used, goals of the form RNxN x must be solved. This is done automatically by a
resolution-based method that uses Def. 1, the relatedness theorems of ADTs and
7 The specialisation is routine and can be found in Appendix B.2.

10

Listing 1.5 Initial goal.
RN (s "a") a ∧ RN (s "xs") xs ∧ RN (s "n") n =⇒
⊢ (countIMP, s) ⇒ret (countN (s "a") (s "xs") (s "n"))

Listing 1.6 (#)-case after induction setup.
RN (s "a") a ∧ RN (s "xs") (x # xs) ∧ RN (s "n") n =⇒ (*RN-assms.*)
(∀s’. RN (s’ "a") a ∧ RN (s’ "xs") xs (*inductive hypothesis*)
∧ RN (s’ "n") (if x = a then Suc n else n) −→
⊢ (countIMP, s’) ⇒ret (countN (s’ "a") (s’ "xs") (s’ "n"))) =⇒

⊢ (countIMP, s) ⇒ret (countN (s "a") (s "xs") (s "n"))

Listing 1.7 Subgoal after symbolic execution (repeated premises abbreviated as <...>).
<RN-assumptions> ∧ <inductive hypothesis> ∧ x = a =⇒
⊢ (countIMP, s’) ⇒ret (countN (s "a") (select2,2 (s "xs")) (Suc (s "n")))

Listing 1.8 Goals after application of inductive hypothesis.
RN (s "a") a ∧ RN (select2,2 (s "xs")) xs ∧ RN (Suc (s "n")) (Suc n)

Fig. 8: Step-by-step correctness proof for countN, described in Example 2.

functions (Theorems 2 and 3), and local assumptions. Note that this is essentially
a form of type-checking, making sure that all involved terms are well-encoded.

Example 2. We continue with the example from Fig. 4 and show the correctness
of countN. The goal states are shown in Fig. 8. First, the induction rule of
count is applied, creating cases for [] and (#). We focus on the latter. Running
countIMP and countN produces two subcases: one for x = a and one for x ̸= a.
We consider the former. The new state s’ = s(r1 := x1,...) is obtained from
s by normalised state updates. Due to normalisation, we immediately get:

s’ "a" = s "a" ∧ s’ "xs" = select2,2(s "xs") ∧ s’ "n" = Suc(s "n")

Thus, the inductive hypothesis can be applied, leaving a set of relatedness goals.
These are solved automatically, using the local assumptions, the selector relat-
edness theorems for lists, and the relatedness theorem for Suc.

Case Studies We applied our framework to typical functional programs, includ-
ing standard datatype functions (map, fold, . . .), the bisection method for square
roots, and problems from complexity theory – such as reductions from SAT to
3SAT and 3SAT to independent sets. The examples can be found in the formal-
isation. All proofs were automatic, but functions using hundreds of registers had
to be split due to inefficient retrievals for the tracked IMPTC state in the current
implementation. Performance improvements are future work. We conjecture that
our method is complete when applied to programs compiled from HOLTC using
our framework, but a formal proof is out of scope.

11

WhF
s r = 0

(WHILE r DO p, s)⇒C s
WhT

s r ̸= 0 (p, s)⇒n1 s′ (WHILE r DO p, s′)⇒n2 s′′

(WHILE r DO p, s)⇒n1+n2+C s′′

Fig. 9: Execution relation for WHILE.

s r ̸= 0 (p1, s)⇒n (s′, b)

(IF r THEN p1 ELSE p2, s)⇒n+C (s′, b)

(p1, s)⇒n1 (s′, 0) (p2, s
′)⇒n2 (s′′, b)

(p1 ; p2, s)⇒n1+n2+C (s′′, b)

(RECURSE, s)⇒C (s, 1)

s′ = s(r := JaKs)

(r ← a, s)⇒C (s′, 0)
. . .

Fig. 10: Execution relation from Lemma 1 that halts with a flag when encounter-
ing a tail-recursive call. Omitted rules are routine and listed in Appendix C.1.

5 IMPTC to IMP−

In this section, we describe the verified chain of compilers from IMPTC to IMP−:

Objective 3. For every IMPTC program p, compile an IMP− program p′ such
that (up to encoding and decoding), for the same input, (1) p and p′ compute the
same output and (2) the number of steps p′ takes is at most polynomially more
than the number of steps p takes.

Note that since the size of the values stored in registers is governed by The-
orem 1, if the above objective is satisfied, the memory used by the final IMP−

program is polynomial in the size of p and its running time.
The compilation proceeds in several steps: First, we compile recursive calls

into while-loops of an intermediate language IMPWC (Section 5.1), Second, we
eliminate calls to other programs (Section 5.2). Finally, we use bit blasting to
compile into our final language IMP− (Section 5.3).

5.1 IMPTC to IMPWC

In the first step, we replace tail-recursive calls by while-loops, whose semantics
are given in Fig. 9. In rule WhT, the loop-condition r ̸= 0 is checked before
stepping into the WHILE. In contrast, tail-recursive calls occur at the end of the
program. To bridge this gap, we prove the following rules for IMPTC.

Lemma 1. Let (p, s)⇒n (s′, b) denote the modified execution relation shown in
Fig. 10 that runs p but stops and flags whenever a tail-recursive call is encoun-
tered using b ∈ {0, 1} Then the following rules are admissible:

(p, s)⇒n (s′, 0)

tp ⊢ (p, s)⇒n s′
(p, s1)⇒n1 (s2, 1) tp ⊢ (tp, s2)⇒n2 s3

tp ⊢ (p, s1)⇒n1+n2 s3

12

Note the similarity between these rules and those for WhT and WhF. These
rules suggest a straightforward translation from p to an IMPWC program by
using a loop that continues as long as a recursive call would have occurred:

Theorem 6. Let cnt be a fresh register with respect to regs p. Let p[t/x] denote
the syntactic substitution of any occurrence of x by t in a program p. Define

LpM⟲ ≡ cnt← 1 ; WHILE cnt DO cnt← 0 ; p[(cnt← 1)/RECURSE].

Then it holds that p ⊢ (p, s)⇒n
regs p s′ if and only if (LpM⟲, s)⇒n+C

regs p s′.

Since we use an additional register, we only get partial equivalence of states
in the correctness theorem. This is sufficient for our purposes nonetheless.

5.2 IMPWC to IMPW

We next eliminate calls to IMPW programs. We simply inline every call to a
program pw by copying its used registers to fresh memory locations, executing
the program there, and copying the result register back:

Definition 5. Let regs pw = {r1, . . . , rn} and m be a renaming to fresh registers.
We define the inlining of a call to program pw with return register r as

LCALL pw RETURN rM⋆ ≡ mr1 ← r1 ; · · · ; mrn ← rn ; pw[mx/x] ; r ← mr.

For an IMPWC program p, we let LpM⋆ denote the IMPW program obtained from
p by inlining all calls.

Note that called programs must already be compiled to IMPW and hence
do not contain further calls. Arguing about a program in a different memory
location requires the obvious substitution lemma:

Lemma 2. (p[(mx)/x], s)⇒n s′ implies (p, s ◦m)⇒n s′ ◦m for injective m.

The inlining induces a blow-up that is dependent on the program size (but
not the input), as shown below.

Theorem 7. (p, s) ⇒n
regs p s′ if (LpM⋆, s) ⇒f(n,p)

regs p s′ where f(n, p) is linear in
n · |p|. Moreover, if (LpM⋆, s)⇒n

regs p s′ then (p, s)⇒n
regs p s′.

5.3 IMPW to IMP−

Our programs so far operate on arbitrary-size natural numbers. In contrast,
our final language IMP− operates on single bits, represented as 0 and 1. The
commands of IMP− and their semantics are shown in Fig. 11. There are no
arithmetic expressions, and all registers represent a single bit.

We use bit-blasting to compile IMPW programs to IMP− programs. The bit-
blasting is parametrised with a number w, indicating the bit-width of the com-
pilation. Each IMPW register r is represented as w + 1 fresh IMP− registers

13

b ∈ {0, 1} s′ = s(r := b)

(r ← b, s)⇒1 s′
s r ̸= 0 (p1, s)⇒n s′

(IF r THEN p1 ELSE p2, s)⇒n+1 s′

(p1, s)⇒n1 s′ (p2, s
′)⇒n2 s′′

(p1 ; p2, s)⇒n1+n2+1 s′′
s r = 0 (p2, s)⇒n s′

(IF r THEN p1 ELSE p2, s)⇒n+1 s′

s r = 0

(WHILE r DO p, s)⇒1 s

s1 r ̸= 0 (p, s1)⇒n1 s2 (WHILE r DO p, s2)⇒n2 s3

(WHILE r DO p, s1)⇒n1+n2+2 s3

Fig. 11: Execution relation for IMP−.

r0, . . . , rw: The IMP− register ri corresponds to the i-th bit of the IMPW register
r, and the register r0 indicates whether all bits are 0. Arithmetic expressions
of IMPW are bit-blasted to IMP− programs. We showcase the bit-blasting for
addition here. The addition of x and y in register r is compiled to

addw x y r ≡ copyw a x ; copyw b y ; adderw r, (4)

where a, b are fresh, fixed IMPW registers. The function copies the first w bits
of x and y to a1, . . . , aw and b1, . . . , bw, respectively, which are then added by
the function adderw r. The function adderw r puts the result of the addition in
registers r0, . . . , rw. It is implemented as follows:

adderw r ≡ fullAdder1 r; · · · ; fullAdderw r; carry ← 0; zero← 0, (5)

where fullAdderi r is a program that implements a standard full adder with zero
check. It adds the bits ai and bi and the carry register carry, storing the result
in ri, the new carry value in carry, and stores in zero whether the result and the
previous zero value were 0. The full adder is called for all bits of the addends.
Then r0 is written, and the carry and zero registers are reset.

We bit-blast all other arithmetic expressions of IMPW in a similar way; details
are in the formalisation. In the next definition, we fix a maximum bit-width w:

Definition 6. We denote with LaMwr the bit-blasted version of arithmetic expres-
sion a stored in register r. For an IMPW state s, we denote with LsMw its corre-
sponding IMP− state, i.e. LsMw ri = (s r)i for all registers r and i < w, where ni

denotes the i-th bit of n.

The functional correctness can now be stated as follows:

Lemma 3. If max {amax, JaKs, smax} < 2w then (LaMwr , LsM
w
)⇒f(w) Ls(r := JaKs)M

w,
where f(w) is linear in w.

Lastly, we show that the overall runtime blow-up of the bit-blasted program is
polynomial. We first lift the bit-blasting of expressions to IMPW programs p, de-
noted by LpMw. In LpMw, arithmetic expressions are replaced with their bit-blasted

14

version and all other constructs are mapped to their corresponding constructs
in the obvious way. For functional correctness, we get:

Theorem 8. If (p, s) ⇒n s′ and n < w and max {smax, pmax} · 2n < 2w, then
(LpMw, LsMw)⇒f(n,w) Ls′Mw where f(n,w) is linear in n · w.

Proof sketch. The proof is by structural induction on the IMP− program p. There
are two interesting cases. The first is the case of assignment, where the theorem
follows from Lemma 3. The other case is that of composition, in which case the
theorem follows from Theorem 1. All other cases follow from basic properties of
program composition and algebraic manipulation of exponents.

6 Discussion

Our work touches the areas of formalised computability and complexity theory,
algorithm refinements and program synthesis, and certified compilation.

Notable work in the first area includes Norrish’s [33] formalisation results,
like Rice’s theorem, in a lambda calculus model. Xu et al. [38] and Asperti and
Ricciotti [3] proved basic results on Turing machines, using Hoare-like logics to
reason about deeply-embedded machines. Carneiro [5] proved basic results using
partial recursive functions. The richest line of work is by Forster [8], modelling
the call-by-value lambda calculus, Turing machines, and other models, and prov-
ing simulations between them. Forster and Kunze [9] introduced a largely auto-
mated synthesis framework from native Coq functions to said lambda calculus
model, including semi-automated time bound proofs. This was used for serious
algorithms, like the Cook-Levin theorem [13]. However, their model is not rea-
sonable in space in general. Our contribution is the first synthesis method into
a simple computation model that is reasonable in time and space.

To make our method practical, we used ideas from algorithm refinements
and transport-based program synthesis [17,20,36], introducing a novel synthesis
for recursive functions in Section 3.2. Other related approaches are algorithm
refinements, which were deeply studied by Lammich [21–24].

In the area of certified compilation, most substantial developments geared
towards practical compilers, such as CakeML [28] and CompCert [26]. We, on
the other hand, we were mainly inspired by the simple and elegant use of IMP
languages [37] in educational material [30,34], which is sufficient to formalise the
theory of efficient algorithms and complexity theory.

Future Work Our framework can be extended in several ways, such as proving
time and memory bounds of synthesised programs with respect to some sensible
semantics for Isabelle/HOL functions [29], generalising from tail-recursion to
general recursion, reducing the time and memory overhead of the compilers for
finer analyses needed in efficient algorithms, and extending it to richer models of
computation, e.g. probabilistic computation, interactive computation, or online
computation. We plan to improve the framework’s performance such that it can
be applied to the verification of serious computational objects, e.g. reductions,

15

like the Cook-Levin theorem [7] or Karp’s 21 NP-complete problems, and the
verification of running time bounds of complex algorithms in general, e.g. flow
algorithms [2, 23] or matching algorithms [1]. A challenge with our framework,
as in any system that synthesises programs using natural numbers as the sole
datatype, is the computational overhead from encoding/decoding datatypes into
natural numbers. Without special care, unsuspecting users may discrepancies
between the expected and actual running time of synthesised programs. Methods
to smoothly handle that discrepancy would greatly improve the usability of our
framework and are a possible future direction.

Acknowledgements The authors thank Bilel Ghorbel, Florian Keßler, Max
Lang, Nico Lintner, Jay Neubrand, Jonas Stahl, and Andreas Vollert for their
contributions as part of their student coursework at TU Munich.

16

References

1. Abdulaziz, M.: A Formal Correctness Proof of Edmonds’ Blossom Shrinking Algo-
rithm (2024). https://doi.org/10.48550/arXiv.2412.20878

2. Abdulaziz, M., Ammer, T.: A Formal Analysis of Capacity Scaling Algorithms for
Minimum Cost Flows. In: The 15th International Conference on Interactive The-
orem Proving (ITP 2024) (2024). https://doi.org/10.4230/LIPIcs.ITP.2024.3

3. Asperti, A., Ricciotti, W.: Formalizing Turing Machines. In: Logic, Language,
Information and Computation. pp. 1–25 (2012). https://doi.org/10.1007/
978-3-642-32621-9_1

4. Balbach, F.J.: The Cook-Levin theorem. Arch. Formal Proofs (2023), https://
www.isa-afp.org/entries/Cook_Levin.html

5. Carneiro, M.: Formalizing Computability Theory via Partial Recursive Func-
tions. In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) 10th Interna-
tional Conference on Interactive Theorem Proving (ITP 2019). Leibniz In-
ternational Proceedings in Informatics (LIPIcs), vol. 141, pp. 12:1–12:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2019).
https://doi.org/10.4230/LIPIcs.ITP.2019.12, https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.ITP.2019.12

6. Church, A.: A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic 5(2), 56–68 (1940). https://doi.org/10.2307/2266170

7. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: 3rd Annual ACM
Symposium on Theory of Computing (STOC). pp. 151–158 (1971). https://doi.
org/10.1145/800157.805047

8. Forster, Y.: Computability in Constructive Type Theory. doctoralThesis, Saar-
ländische Universitäts- und Landesbibliothek (2021). https://doi.org/10.22028/
D291-35758

9. Forster, Y., Kunze, F.: A Certifying Extraction with Time Bounds from Coq
to Call-By-Value Lambda Calculus. In: Harrison, J., O’Leary, J., Tolmach,
A. (eds.) 10th International Conference on Interactive Theorem Proving (ITP
2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 141, pp.
17:1–17:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Ger-
many (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.17, https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.17

10. Forster, Y., Kunze, F., Roth, M.: The weak call-by-value λ-calculus is reasonable
for both time and space. Proc. ACM Program. Lang. 4(POPL) (Dec 2019). https:
//doi.org/10.1145/3371095, https://doi.org/10.1145/3371095

11. Forster, Y., Kunze, F., Wuttke, M.: Verified programming of Turing machines
in Coq. In: Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21,
2020. pp. 114–128 (2020). https://doi.org/10.1145/3372885.3373816

12. Forster, Y., Smolka, G.: Weak call-by-value lambda calculus as a model of com-
putation in coq. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) Interactive Theorem
Proving. pp. 189–206. Springer International Publishing, Cham (2017)

13. Gäher, L., Kunze, F.: Mechanising Complexity Theory: The Cook-Levin Theorem
in Coq. In: 12th International Conference on Interactive Theorem Proving (ITP).
pp. 20:1–20:18 (2021). https://doi.org/10.4230/LIPIcs.ITP.2021.20

14. Gordon, M.J.C.: Mechanizing Programming Logics in Higher Order Logic. In: Cur-
rent Trends in Hardware Verification and Automated Theorem Proving, pp. 387–
439. Springer (1989). https://doi.org/10.1007/978-1-4612-3658-0_10

17

https://doi.org/10.48550/arXiv.2412.20878
https://doi.org/10.48550/arXiv.2412.20878
https://doi.org/10.4230/LIPIcs.ITP.2024.3
https://doi.org/10.4230/LIPIcs.ITP.2024.3
https://doi.org/10.1007/978-3-642-32621-9_1
https://doi.org/10.1007/978-3-642-32621-9_1
https://doi.org/10.1007/978-3-642-32621-9_1
https://doi.org/10.1007/978-3-642-32621-9_1
https://www.isa-afp.org/entries/Cook_Levin.html
https://www.isa-afp.org/entries/Cook_Levin.html
https://doi.org/10.4230/LIPIcs.ITP.2019.12
https://doi.org/10.4230/LIPIcs.ITP.2019.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.12
https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.22028/D291-35758
https://doi.org/10.22028/D291-35758
https://doi.org/10.22028/D291-35758
https://doi.org/10.22028/D291-35758
https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.17
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.17
https://doi.org/10.1145/3371095
https://doi.org/10.1145/3371095
https://doi.org/10.1145/3371095
https://doi.org/10.1145/3371095
https://doi.org/10.1145/3371095
https://doi.org/10.1145/3372885.3373816
https://doi.org/10.1145/3372885.3373816
https://doi.org/10.4230/LIPIcs.ITP.2021.20
https://doi.org/10.4230/LIPIcs.ITP.2021.20
https://doi.org/10.1007/978-1-4612-3658-0_10
https://doi.org/10.1007/978-1-4612-3658-0_10

15. Gordon, M.: HOL : A machine oriented formulation of higher order logic. Tech.
Rep. UCAM-CL-TR-68, University of Cambridge, Computer Laboratory (1985).
https://doi.org/10.48456/tr-68

16. Greenaway, D., Andronick, J., Klein, G.: Bridging the Gap: Automatic Verified
Abstraction of C. In: Interactive Theorem Proving. pp. 99–115 (2012). https:
//doi.org/10.1007/978-3-642-32347-8_8

17. Huffman, B., Kuncar, O.: Lifting and Transfer: A Modular Design for Quotients in
Isabelle/HOL. In: Certified Programs and Proofs - Third International Conference,
CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings. pp.
131–146 (2013). https://doi.org/10.1007/978-3-319-03545-1_9

18. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reason-
ing. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015. pp. 637–650 (2015). https://doi.org/10.1145/2676726.2676980

19. Kappelmann, K.: Transport via partial galois connections and equivalences.
Archive of Formal Proofs (October 2023), https://isa-afp.org/entries/
Transport.html, Formal proof development

20. Kappelmann, Kevin: Transport via Partial Galois Connections and Equivalences.
In: Hur, Chung-Kil (ed.) Asian Symposium on Programming Languages and
Systems. pp. 225–245. Springer, Singapore (2023). https://doi.org/{10.1007/
978-981-99-8311-7_11}

21. Lammich, P.: Refinement to Imperative HOL. Journal of Automated Reason-
ing 62(4), 481–503 (Apr 2019). https://doi.org/10.1007/s10817-017-9437-1,
https://doi.org/10.1007/s10817-017-9437-1

22. Lammich, P., Meis, R.: A Separation Logic Framework for Imperative HOL. Arch.
Formal Proofs (2012), https://www.isa-afp.org/entries/Separation_Logic_
Imperative_HOL.shtml

23. Lammich, P., Sefidgar, S.R.: Formalizing Network Flow Algorithms: A Refine-
ment Approach in Isabelle/HOL. Journal of Automated Reasoning 62(2), 261–280
(Feb 2019). https://doi.org/10.1007/s10817-017-9442-4, https://doi.org/
10.1007/s10817-017-9442-4

24. Lammich, P., Tuerk, T.: Applying Data Refinement for Monadic Programs to
Hopcroft’s Algorithm. In: Interactive Theorem Proving. pp. 166–182 (2012).
https://doi.org/10.1007/978-3-642-32347-8_12

25. Lammich, P., Wimmer, S.: Imp2 – simple program verification in isabelle/hol.
Archive of Formal Proofs (January 2019), https://isa-afp.org/entries/IMP2.
html, Formal proof development

26. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7),
107–115 (Jul 2009). https://doi.org/10.1145/1538788.1538814, https://doi.
org/10.1145/1538788.1538814

27. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: min-
imizing the coq extraction tcb. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs. p. 172–185. CPP
2018, Association for Computing Machinery, New York, NY, USA (2018). https:
//doi.org/10.1145/3167089, https://doi.org/10.1145/3167089

28. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ml. Journal of Functional Programming 24, 284 – 315 (2014),
https://api.semanticscholar.org/CorpusID:5932358

18

https://doi.org/10.48456/tr-68
https://doi.org/10.48456/tr-68
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://isa-afp.org/entries/Transport.html
https://isa-afp.org/entries/Transport.html
https://doi.org/{10.1007/978-981-99-8311-7_11}
https://doi.org/{10.1007/978-981-99-8311-7_11}
https://doi.org/{10.1007/978-981-99-8311-7_11}
https://doi.org/{10.1007/978-981-99-8311-7_11}
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://www.isa-afp.org/entries/Separation_Logic_Imperative_HOL.shtml
https://www.isa-afp.org/entries/Separation_Logic_Imperative_HOL.shtml
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://isa-afp.org/entries/IMP2.html
https://isa-afp.org/entries/IMP2.html
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3167089
https://doi.org/10.1145/3167089
https://doi.org/10.1145/3167089
https://doi.org/10.1145/3167089
https://doi.org/10.1145/3167089
https://api.semanticscholar.org/CorpusID:5932358

29. Nipkow, T., Blanchette, J., Eberl, M., Gomez-Londono, A., Lammich, P., Ster-
nagel, C., Wimmer, S., Zhan, B.: Functional data structures and algorithms. A
proof assistant approach (2024)

30. Nipkow, T., Klein, G.: Concrete Semantics. Springer (2014). https://doi.org/
10.1007/978-3-319-10542-0

31. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer (2014).
https://doi.org/10.1007/978-3-319-10542-0

32. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer-Verlag, Berlin, Heidelberg (2002). https://doi.org/
10.1007/3-540-45949-9

33. Norrish, M.: Mechanised Computability Theory. In: Interactive Theorem Proving.
pp. 297–311 (2011). https://doi.org/10.1007/978-3-642-22863-6_22

34. Pierce, B.C., de Amorim, A.A., Casinghino, C., Gaboardi, M., Greenberg,
M., Hriţcu, C., Sjöberg, V., Yorgey, B.: Logical Foundations, https://
softwarefoundations.cis.upenn.edu/lf-current/

35. Slot, C., Boas, P.V.E.: On tape versus core an application of space efficient perfect
hash functions to the invariance of space. In: Proceedings of the Sixteenth Annual
ACM Symposium on Theory of Computing - STOC ’84. pp. 391–400 (1984). https:
//doi.org/10.1145/800057.808705

36. Tabareau, N., Tanter, E., Sozeau, M.: The marriage of univalence and para-
metricity. J. ACM 68(1) (Jan 2021). https://doi.org/10.1145/3429979, https:
//doi.org/10.1145/3429979

37. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press (1993)

38. Xu, J., Zhang, X., Urban, C.: Mechanising Turing Machines and Computability
Theory in Isabelle/HOL. In: Interactive Theorem Proving. pp. 147–162 (2013).
https://doi.org/10.1007/978-3-642-39634-2_13

A HOL(TC) to HOL(TC)N

A.1 Compilation of Datatypes

Let #»α t = C1
»α1 | · · · | Cn

»αn be an algebraic datatype with ai ≡ | #»αi|. Recall that
we require an injective pairing function pair : N2 ⇒ N and functions fst, snd :
N⇒ N with

fst (pair nm) = n and snd (pair nm) = m. (6)

Our construction proceeds as follows:

(a) We define CN
i : Nai ⇒ N by

CN
i

#»x ≡

{
pair i (pair x1 (pair x2(· · · (pair xai−1 xai

) · · ·), if ai > 0

pair i 0, otherwise
. (7)

(b) For each i, j, we define the selector selecti,j : N⇒ N as

selecti,j x ≡ (if j < i then fst else id) (sndj x). (8)

19

https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-22863-6_22
https://doi.org/10.1007/978-3-642-22863-6_22
https://softwarefoundations.cis.upenn.edu/lf-current/
https://softwarefoundations.cis.upenn.edu/lf-current/
https://doi.org/10.1145/800057.808705
https://doi.org/10.1145/800057.808705
https://doi.org/10.1145/800057.808705
https://doi.org/10.1145/800057.808705
https://doi.org/10.1145/3429979
https://doi.org/10.1145/3429979
https://doi.org/10.1145/3429979
https://doi.org/10.1145/3429979
https://doi.org/10.1007/978-3-642-39634-2_13
https://doi.org/10.1007/978-3-642-39634-2_13

(c) We define caseN :
(
(Na1 ⇒ α)⇒ · · · ⇒ (Nan ⇒ α)⇒ N⇒ α

)
by

caseN
#»

f x ≡

{
fi (selectai,1 x) · · · (selectai,ai

x), if i = fstx, 1 ≤ i ≤ n− 1

fn (selectan,1 x) · · · (selectan,an x), otherwise.
(9)

(d) We define natify : #»α t⇒ N and denatify : N⇒ #»α t by

natify (Ci
#»x) ≡ CN

i

»

natify xj , (10)

denatify (CN
i

#»x) ≡ Ci
»

denatify xj . (11)

Note that natify, denatify are overloaded and Eqs. (10) and (11) well-defined if
all α ∈ # »α1 ∪ · · · ∪ # »αn are already encoded or α = #»α t.

Theorem. #»α d = C1
»α1 | · · · | Cn

»αn is encodable if all α ∈ # »α1 ∪ · · · ∪ # »αn are
encoded or α = #»α d. Also, for all 1 ≤ i ≤ n, 1 ≤ j ≤ ai and relations R, we have

(RNai ⇛ RN)CN
i Ci, RNn (Ci

#»x) =⇒ RN (selectai,jn)xj ,(
(RNa1 ⇛ R) ⇛ · · ·⇛ (RNan ⇛ R) ⇛ RN ⇛ R

)
caseNd cased.

Proof. We have to show that denatify (natify x) = x for all x. This follows directly
by definition of denatify, natify and the fact that fst, snd are inverse to pair and all
α ∈ # »α1 ∪ · · · ∪ # »αn are encoded (and hence have inverse functions natify, denatify).

The relatedness statements follow similarly by definition and the relatedness
properties of the type arguments en- and decoding functions.

Example 3. For the type of lists, ’a list = Nil | Cons ’a "’a list", the
following constants are defined

definition Nil_nat = pair_nat 1 0
definition Cons_nat x xs = pair_nat 2 (pair_nat x xs)
definition case_list_nat f1 f2 n = if fst n = 1 then f1

else f2 (select2,1 n) (select2,2 n)
definition denatify =

case_list_nat Nil (λx xs. Cons (denatify x) (denatify xs))
definition natify =

case_list Nil_nat (λx xs. Cons_nat (natify x) (natify xs))

and the following theorems are proven:

lemma "RN Nil_nat Nil"
lemma "(RN ⇛ RN ⇛ RN) Cons_nat Cons"
lemma "(R ⇛ (RN ⇛ RN ⇛ R) ⇛ RN ⇛ R)

case_list_nat case_list"
lemma "RN ns (x # xs) =⇒ RN (select2,1 ns) x"
lemma "RN ns (x # xs) =⇒ RN (select2,2 ns) xs"

20

t ::= If t1 t2 t3 (if-then-else with natural number condition t1)
| Let t1 t2 (bind t1 to the first de Bruijn index in t2)
| LetBound i (variable bound by i-th enclosing Let)
| Arg i (i-th argument of f , i.e. xi)
| Numbern (natural number n ∈ N)
| Call g [t1, . . . , tm] (call to g : Nm ⇒ N with arguments t1, . . . , tm)
| Recurse [t1, . . . , tk] (recursion with arguments t1, . . . , tk)

Fig. 12: Datatype representation of HOLTCN in the metaprogramming language.

A.2 Synthesis of HOLN Functions

Theorem. RN, natify, and denatify form a partial Galois equivalence. Thus,
there is some fN that is RN-related to f .

Proof. Due to [20, Lemma 2], it suffices to show that (1) RN is right-total and
right-unique, (2) RNnx implies denatify n = x, and (3) RN (natify x)x for all
n, x. By Def. 2, RN is right-total and RN (natify x)x. Since natify is injective
(Def. 2), RN is also right-unique and RNnx implies denatify n = x.

The existence of fN now follows from [20, Theorem 1 and 2].

Theorem (Whitebox-Transport [17]). (λ #»x . t) and λ #»x . t are RN-related and
white-box transports preserve tail-recursiveness and first-order applications.

Proof. The former is shown by structural induction on t, using that f is RN-
related to fN by Theorem 3 and all other functions g are RN-related to gN by
assumption.

The latter follows immediately from Def. 4 and structural induction on t.

B HOLTCN to IMPTC

B.1 Compilation to IMPTC

Fig. 12 shows the datatype representation of HOLTCN as used in the compiler
to IMPTC, shown in Fig. 13.

B.2 Correctness Proofs

Our goal is to show that p ⊢ (p, s) ⇒retf fTCN # »s argf,i, i.e. we are interested in
the single return register retf . Fig. 14 shows the execution relation for IMPTC

specialised to single return registers. Note that for sequences (p1 ; p2, s)⇒r v,
the standard execution relation “⇒” (and not “⇒r”) must be used for p1, that
is (p1, s)⇒ s′.

21

JIf t1 t2 t3Kbr ≡ Jt1Kbx ; IF x THEN Jt2Kbr ELSE Jt3Kbr (fresh x)

JLet t1 t2Kbr ≡ Jt1Kbx ; Jt2K
x#b
r (fresh x)

JLetBoundnKbr ≡ r ← b !n

JArgnKbr ≡ r ← argf,n

JNumbernKbr ≡ r ← n

JCall g [t1, . . . , tm]Kbr ≡ Jt1Kbx1
; . . . ; JtmKbxm

; (fresh x1, . . . , xm)

argg,1 ← x1 ; . . . ; argg,m ← xm ;

CALL gIMP
RETURN retg ; r ← retg (gIMP registered for g)

JRecurse [t1, . . . , tk]Kbr ≡ Jt1Kbx1
; . . . ; JtkKbxk

(fresh x1, . . . , xk)

argf,1 ← x1 ; . . . ; argf,k ← xk ;

RECURSE

Fig. 13: The compiler from the HOLTCN representation in Fig. 12 to IMPTC.

Assign1

s(r := JaKs) r′ = v

(r ← a, s)⇒r′ v
IfT1

s r ̸= 0 (p1, s)⇒r v

(IF r THEN p1 ELSE p2, s)⇒r v

Seq1

(p1, s)⇒ s′ (p2, s
′)⇒r v

(p1 ; p2, s)⇒r v
IfF1

s r = 0 (p2, s)⇒r v

(IF r THEN p1 ELSE p2, s)⇒r v

Call1

(pc, s)⇒r v s(r := v) r′ = v′

(CALL pc RETURN r, s)⇒r′ v
′ Rec1

p ⊢ (p, s)⇒r v

p ⊢ (RECURSE, s)⇒r v

Fig. 14: Execution relation of IMPTC for single return registers.

This is the reason why each compiled IMPTC program p is normalised such
that no recursive constructor (sequences and if-then-elses) appears on the left of
a sequence. This way, all goals involving recursive constructors use the execu-
tion relation “⇒r”, saving us from implementing separate recursive automation
for “⇒”.

C IMPTC to IMP−

C.1 IMPTC to IMPWC

Lemma. Let (p, s) ⇒n (s′, b) denote the modified execution relation shown in
Fig. 15 that runs p but stops and flags whenever a tail-recursive call is encoun-

22

s′ = s(r := JaKs)

(r ← a, s)⇒C (s′, 0)

s r ̸= 0 (p1, s)⇒n (s′, b)

(IF r THEN p1 ELSE p2, s)⇒n+C (s′, b)

(p1, s)⇒n1 (s′, 0) (p2, s
′)⇒n2 (s′′, b)

(p1 ; p2, s)⇒n1+n2+C (s′′, b)

s r = 0 (p2, s)⇒n (s′, b)

(IF r THEN p1 ELSE p2, s)⇒n+C (s′, b)

(pc, s)⇒n
r v s′ = s(r := v)

(CALL pc RETURN r, s)⇒n+C (s′, 0) (RECURSE, s)⇒C (s, 1)

Fig. 15: Auxiliary execution relation used in Lemma 1.

tered using b ∈ {0, 1} Then the following rules are admissible:

(p, s)⇒n (s′, 0)

(p, s)⇒n s′
(p, s1)⇒n1 (s2, 1) tp ⊢ (tp, s2)⇒n2 s3

tp ⊢ (p, s1)⇒n1+n2 s3

Proof sketch. By induction over the execution rules.

Theorem. Let cnt be a fresh register with respect to regs p. Let p[t/x] denote
the syntactic substitution of any occurrence of x by t in a program p. Define

LpM⟲ ≡ cnt← 1 ; WHILE cnt DO cnt← 0 ; p[(cnt← 1)/RECURSE].

Then it holds that p ⊢ (p, s)⇒n
regs p s′ if and only if (LpM⟲, s)⇒n+C

regs p s′.

Proof sketch. We show that ⊢ (p, s)⇒n (s′, b) holds if and only if

∃s′′. (p[(cnt← 1)/RECURSE], s)⇒n s′′ ∧ s′′ cnt = b ∧ ∀r ∈ regs p. s′ p = s′′ p

by induction over the execution rules, generalising over S such that regs p ⊆ S
and cnt /∈ S. Then the semantics for the while-loop with rules from Fig. 9 are
equivalent to the semantics of the compiled program with rules from Lemma 1
by straightforward induction over the respective rules.

C.2 IMPWC to IMPW

Lemma. (p[mx/x], s)⇒n s′ implies (p, s ◦m)⇒n s′ ◦m for injective m.

Proof sketch. By induction over the execution of p.

The inlining induces a blow-up that is dependent on the program size (but
not the input), as shown below.

Theorem. (p, s)⇒n
regs p s′ if and only if (LpM⋆, s)⇒f(n)

regs p s′, where f(n) is linear
in n · |p|.

Proof sketch. The inlining is correct by Lemma 2, so correctness follows by a
simple induction.

23

JCnKs ≡ n, JR rKs ≡ s r

(a) Evaluation of atoms A.

JA1 ⊗A2Ks ≡ JA1Ks ⊗ JA2Ks, for ⊗ ∈ {+,−}

(b) Evaluation rules for arithmetic expressions.

Assign
s′ = s(r := JaKs)

(r ← a, s)⇒C s′
IfT

s r ̸= 0 (p1, s)⇒n s′

(IF r THEN p1 ELSE p2, s)⇒n+C s′

Seq
(p1, s)⇒n1 s′ (p2, s

′)⇒n2 s′′

(p1 ; p2, s)⇒n1+n2+C s′′
IfF

s r = 0 (p2, s)⇒n s′

(IF r THEN p1 ELSE p2, s)⇒n+C s′

Call
(pc, s)⇒n

r v s′ = s(r := v)

(CALL pc RETURN r, s)⇒n s′
Rec

p ⊢ (p, s)⇒n s′

p ⊢ (RECURSE, s)⇒n+C s′

(c) Execution relation for commands.

Fig. 16: Semantics of IMPTC.

WhF
s r = 0

(WHILE r DO p, s)⇒C s

WhT
s1 r ̸= 0 (p, s1)⇒n1 s2 (WHILE r DO p, s2)⇒n2 s3

(WHILE r DO p, s1)⇒n1+n2+C s3

Fig. 17: Execution relation for WHILE from IMPWC and IMPW.

C.3 IMPW to IMP−

Lemma. Assume that max {amax, JaKs, smax} < 2w. Then it holds that
(LaMwr , LsM

w
)⇒f(w) Ls(r := JaKs)M

w, where f(w) is linear in w.

Proof Sketch. The proof is based on showing an upper bound on the running
time of each of the functions copya b y and adderw v, which in turn depends on
the running time of fullAdderi r. The running time of fullAdderi r is a constant.
The running times of adder and copy are shown to be linear in w by induction
on w.

D IMP-Definitions

Fig. 16 shows the complete specification of IMPTC, Fig. 17 the rule for WHILE,
and Fig. 18 the complete specification of IMP−.

24

b ∈ {0, 1} s′ = s(r := b)

(r ← b, s)⇒1 s′
s r ̸= 0 (p1, s)⇒n s′

(IF r THEN p1 ELSE p2, s)⇒n+1 s′

(p1, s)⇒n1 s′ (p2, s
′)⇒n2 s′′

(p1 ; p2, s)⇒n1+n2+1 s′′
s r = 0 (p2, s)⇒n s′

(IF r THEN p1 ELSE p2, s)⇒n+1 s′

s r = 0

(WHILE r DO p, s)⇒1 s

s1 r ̸= 0 (p, s1)⇒n1 s2 (WHILE r DO p, s2)⇒n2 s3

(WHILE r DO p, s1)⇒n1+n2+2 s3

Fig. 18: Execution relation for IMP−.

25

	Proof-Producing Translation of Functional Programs into a Time & Space Reasonable Model

