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Abstract
We present a formal analysis, in Isabelle/HOL [30], of optimisation algorithms for matroids, which
are useful generalisations of combinatorial structures that occur in optimisation, and greedoids,
which are a generalisation of matroids. Although some formalisation work has been done earlier on
matroids, our work here presents the first formalisation of results on greedoids, and many results we
formalise in relation to matroids are also formalised for the first time in this work. We formalise the
analysis of a number of optimisation algorithms for matroids and greedoids. We also derive from
those algorithms executable implementations of Kruskal’s algorithm for minimum spanning trees,
an algorithm for maximum cardinality matching for bi-partite graphs, and Prim’s algorithm for
computing minimum weight spanning trees.
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1 Introduction

Matroids are algebraic structures that generalise the concepts of graphs and matrices, where
a matroid is a pair of sets (E,F) satisfying a number of conditions, e.g. E is a finite set
and F ⊆ 2E . Although they have a generally rich mathematical structure which inherently
justifies studying them, there are two main motivations to studying them in the context
of combinatorial optimisation. First, optimisation problems defined on matroids generalise
many standard combinatorial optimisation problems: e.g. the minimisation problem for
matroids over modular objective functions generalises the travelling salesman problem, the
shortest-path problem, minimum spanning trees, and Steiner trees, all of which are important
standard optimisation problems. This means that verifying an algorithm for the minimisation
problem, for instance, allows for deriving algorithms to solve many other problems (modulo
some conditions that we will discuss later), and in many cases those derived algorithms are
practical, albeit sometimes asymptotically slower than the fastest possible algorithms. The
second reason to study matroids is that, since they are an abstraction of other concrete
structures, like graphs, reasoning about (algorithms that process) them avoids a lot of the
combinatorial reasoning and the case analyses encountered when reasoning about (algorithms
processing) the more concrete structures.

In this paper we formalise, in Isabelle/HOL [30], a number of results about matroids, and
greedoids, which are a generalisation of matroids. We formally analyse greedy algorithms
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23:2 A Formal Analysis of Algorithms for Matroids and Greedoids

for the maximisation problems for both structures and prove guarantees on the optimality
of the solutions those greedy algorithms find. We also formally analyse an algorithm for
the matroid intersection problem, where one aims to find the largest member of F1 ∩ F2,
for two matroids (E,F1) and (E,F2). We then instantiate the verified algorithms with
concrete instances to obtain executable algorithms for standard graph problems: we obtain
an O(n2 · log2 n) implementation of Kruskal’s algorithm from the greedy algorithm for
matroids, an O(n ·m · (log n+log m)) algorithm for maximum cardinality bi-partite matching
from the matroid intersection algorithm, and an O(n ·m log n) implementation of Prim’s
algorithm for minimum weight spanning trees from the greedy algorithm for greedoids, where
n and m are the number of vertices and edges of the input graph, respectively.1 In addition
to verifying these algorithms, we formalise a number of results from the theory of matroids
and greedoids, e.g. the fact that matroids can be fully characterised by the greedy algorithm,
and the relationship between greedoids and antimatroids. With the exception of deriving
Kruskal’s algorithm from the greedy algorithm for maximisation over matroids [14], all the
above results were not formalised before in any theorem prover. In our formalisation, we
follow Korte and Vygen’s textbook [21] and Schrijver’s textbook [33], with the former being
our main reference.
Availability Our formalisation is available online at https://github.com/mabdula/Isabe
lle-Graph-Library.

2 Background

Matroids A set system (E,F) consists of a carrier set E and a collection of independent
sets F ⊆ 2E . We only consider finite carriers. We call (E,F) an independence system
iff (M1) ∅ ∈ F and (M2) X ⊆ Y and Y ∈ F implies X ∈ F . Members of F are called
independent. Sets F ⊆ E with F ̸∈ F are called dependent. A matroid is an independence
system satisfying the augmentation property (M3): for X, Y ∈ F and |X| > |Y |, there is
x ∈ X \ Y with Y ∪ {x} ∈ F .

A basis of a set X ⊆ E is an independent subset of X maximal w.r.t. set inclusion. On
the contrary, a circuit C ⊆ E is a minimal dependent set, e.g. there are no circuits if F = 2E .
For X ⊆ E, the lower rank ρ(X) and (upper) rank r(X) are the cardinalities of the smallest
and largest bases of X, respectively. The rank quotient q(E,F) is defined as the minimum of
ρ(X)
r(X) over all X ⊆ E. For example, if F = {∅, {1}, {2}, {3}, {2, 3}} for E = {1, 2, 3}, {1} is a
smallest and {2, 3} is a largest basis for X = E and ρ(X)

r(X) = 1 for all other X ⊆ E leading to
q(E,F) = 1

2 . We have 0 < q(E,F) ≤ 1 in general, and q(E,F) = 1 iff (E,F) is a matroid.
Intuitively, the quotient expresses how close an independence system is to being a matroid.

Generalising planar graph duality (see details of instantiation to directed graphs in the
next section), we call (E,F∗) the dual of an independence system (E,F), where a set F ∈ F∗

iff there is a basis B of (E,F) s.t. F ∩B = ∅. As a basic property, we have that the dual of
the dual (E,F∗∗) is the independence system (E,F) itself. Furthermore, (E,F∗) is a matroid
iff (E,F) is a matroid. For a matroid (E,F) and F ⊆ E, r∗(F ) = |F |+ r(E \ F ) − r(E),
where r∗ is the rank of the dual.
Formalisation Keinholz already formalised independence systems, matroids, bases, circuits,
lower ranks and basic properties of these in Isabelle/HOL [16] using locales. In Isabelle/HOL,
locales [7] are named contexts allowing the fixing of constants and the assertion of assumptions

1 These running times were not verified.
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definition Frac ::"int ⇒int ⇒rat" where
"Frac a b = (if a = b then 1 else Fract a b)"

definition rank_quotient ::"rat" where
"rank_quotient = Min {Frac (int (lower_rank_of X)) (int (rank X)) | X. X ⊆carrier}"

Listing 1 Definition of the rank quotient in Isabelle/HOL.

locale indep_system =
fixes carrier ::"'a set" fixes indep ::"'a set ⇒bool"
assumes carrier_finite: "finite carrier"
assumes indep_subset_carrier: "indep X =⇒X ⊆carrier"
assumes indep_ex: "∃X. indep X"
assumes indep_subset: "indep X =⇒Y ⊆X =⇒indep Y"

locale matroid = indep_system +
assumes augment_aux:

"indep X =⇒indep Y =⇒card X = Suc (card Y) =⇒∃x ∈X - Y. indep (insert x Y)"

Listing 2 Two locales with assumptions characterising independent systems and matroids.

on their properties, which will then be available within the locale for definitions and proofs.
Keinholz gives locales indep_system and matroid shown in Listing 2, each of which fixes
a carrier set carrier and an independence predicate indep specifying which subsets of
carrier should be independent. We extend this formalisation with another equivalent
definition of the upper rank. For the rank quotient, we explicitly define the argument of the
minimum to be 1 when ρ(X) = r(X) to treat division by zero and empty carriers.
Verification Methodology As mentioned earlier, a goal of this work is to formalise some of
the theory of matroids and greedoids and then obtain executable algorithms to process them.
We follow Nipkow’s [29] approach of using locales to model abstract data types (ADTs) and
to implement data structures such as finite sets. The functions and assumptions of an ADT
can be encapsulated into a locale. In that approach, one specifies invariants, which give the
conditions for the data structure to be well-formed, and abstraction functions, which convert
an instance of the data structure into a value of the abstract mathematical type which it
represents (see Listing 3, for instance). Implementing an algorithm defined using ADTs can
be done by instantiating the ADTs with executable implementations. The approach thus
allows correctness guarantees and a lot of the proofs to be done at an abstract mathematical
level, while executable implementations are obtained.

To model iteration, we follow Abdulaziz’s [29] approach whereby algorithms involving
for- or while-loops are specified in Isabelle/HOL as recursive functions manipulating values
of algorithm states, which are modelled as records with fields corresponding to the variables
which change as the algorithm runs. The verification of the correctness properties of an
algorithm is done using loop invariants, which are shown to hold for the initial state and to
be preserved across every distinct execution path of the algorithm. With a custom-defined
induction principle and by providing a termination proof for the function, we can deduce the
relevant correctness theorems for the function using the invariant properties.

Our approach has limitations when it comes to the efficiency of executable code, as it
cannot generate imperative code, it strikes a good balance of obtaining practical verified
implementations for algorithms with deep background mathematical theory.

CVIT 2016
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locale Card_Set2 = Set2 +
fixes cardinality ::"'s ⇒nat"
assumes nonempty_repr: "invar X =⇒X ̸=empty =⇒set X ̸=set empty"
assumes set_cardinality: "invar X =⇒cardinality X = card (set X)"

Listing 3 An ADT for binary set operations: a set implementation is assumed to be of type ’s.

locale Indep_System_Specs = set: Card_Set2 + ...
begin
definition indep_system_axioms where

"indep_system_axioms carrier indep_fn =
((∀X. set_inv X −→indep_fn X −→subseteq X carrier) ∧
(∃X. set_inv X ∧indep_fn X) ∧
(∀X Y. set_inv X −→set_inv Y −→indep_fn X −→subseteq Y X −→indep_fn Y))"

...
lemma indep_system_abs_equiv:

"indep_system_axioms carrier indep_fn =
indep_system (carrier_abs carrier) (indep_abs indep_fn)"

Listing 4 A locale specifying an ADT for independence systems.

3 Greedy Algorithm for Matroids

In order to implement executable algorithms on independence systems and matroids in
Isabelle/HOL, we first provide a specification of these structures that allows for executable
implementations. Since the locales indep_system and matroid work with ’mathematical’
sets of the type ’a set, we specify as a locale an ADT for sets which can be abstracted to a
set of type ’a set, which would allow for executability later on after instantiation. For this,
we specify an ADT using a locale extending an existing ADT (Set2) for binary set operations
with the function cardinality. We then define the locale Indep_System_Specs, which
includes the specification for Card_Set2. Within this locale, an independence system will be
represented by a carrier set carrier of type ’s, and an independence function indep_fn of
type ’s ⇒ bool. indep_fn is an independence oracle, that is, it takes a set X as input and
returns a Boolean value indicating whether X is independent w.r.t. the matroid.

Indep_System_Specs defines a predicate indep_system_axioms which gives the inde-
pendence system properties for carrier and indep_fn, in terms of the well-formedness
invariant and the set operations from Card_Set2. We also define two abstraction functions
carrier_abs and indep_abs which convert carrier and indep_fn to their abstract counter-
parts of type ’a set and ’a set ⇒ bool, respectively. We prove that if the invariants hold,
then indep_system_axioms carrier indep_fn is equivalent to the abstract independence
system properties for the abstractions of carrier and indep_fn, which allows us to reuse
the theory on abstract independence systems for the implementation. We also assume
an invariant that states, among other things, that the independence function must return
the same value for any two implementation sets that have the same abstraction, which is
non-vacuous as one abstract set can have multiple different implementations representing
it. This is needed to show that the implementation and abstraction of the independence
functions are equivalent. Finally, we define a locale Matroid_Specs which has the same
specification as Indep_System_Specs and contains the additional, analogous predicates and
lemmas for matroids.
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Algorithm 1 BestInGreedy(E,F , c)

1 Sort E := {e1, . . . , en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en);//sort the carrier set
2 F ← ∅; //initialise result
3 for i := 1 to n do
4 //check if F stays independent after adding ei, add ei if it stays independent
5 if F ∪ {ei} ∈ F then F ← F ∪ {ei};
6 return F ;

3.1 Specification of the Best-In-Greedy Algorithm

The Best-In-Greedy algorithm is used to solve the maximisation problem on independence
systems. Here, we consider an independence system (E,F) and a nonnegative cost function
c : E 7→ R+, and want to find a set X ∈ F which maximises the total cost c(X) :=

∑
e∈X c(e).

For the greedy algorithm, we assume the existence of an independence oracle, which given a
set F ⊆ E, decides whether F ∈ F or not. The pseudocode of the Best-In-Greedy algorithm
is shown in Algorithm 1.

In order to implement and verify the Best-In-Greedy algorithm, we define a locale
Best_In_Greedy. It assumes that its input matroid satisfies Matroid_Specs. The elements
of the carrier are assumed to be of type ’a. Furthermore, the locale fixes a carrier set
carrier of type ’s, an independence function indep_fn of type ’s ⇒ bool and a sorting
function sort_desc of type (’a ⇒ rat) ⇒ ’a list ⇒ ’a list which sorts the input
list in descending order using the input function as a key.

We define the state for the greedy algorithm as a record type, where carrier_list is a
list of type ’a list consisting of the elements of the carrier set (corresponding to E) and
result is the result set of type ’s which is constructed over the course of the algorithm
(corresponding to F ). With this state type, we can specify the algorithm as a function in
Isabelle/HOL as shown in Listing 4.

The recursive function BestInGreedy implements the loop in the pseudocode. It goes
recursively through the sorted carrier list, adding elements to the constructed solution as
appropriate. The algorithm requires a cost function c and a list order containing the elements
of the carrier set in an initial arbitrary ordering. These two parameters are not fixed in the
locale since we need to quantify over them in the subsequent correctness theorems (both
universally and existentially). We require an explicit initial ordering of the elements for the
proof of one of the correctness theorems. The initial state of the Best-In-Greedy algorithm is
defined by setting carrier_list to sort_desc c order and result to the empty set.

3.2 Verification of the Best-In-Greedy Algorithm

We now describe some of the important aspects of the verification of the Best-In-Greedy
algorithm in Isabelle/HOL. Several of the definitions used in the verification of the Best-
In-Greedy algorithm are parametrised by c and order. Whenever these terms appear in
a theorem, we assume that c is nonnegative and that the elements of order correspond
exactly to those in the carrier set. Additionally, for all the correctness theorems on the
greedy algorithm, we assume the predicates BestInGreedy_axioms, sort_desc_axioms and
matroid.indep_system_axioms carrier indep_fn.

BestInGreedy_axioms contains the invariants from the locale Matroid_Specs, whereas
sort_desc_axioms states that the function sort_desc sorts the input list in non-increasing

CVIT 2016
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function BestInGreedy ::"('a, 's) best_in_greedy_state
⇒('a, 's) best_in_greedy_state" where
"BestInGreedy state =

(case (carrier_list state) of [] ⇒state
| (x # xs) ⇒(if indep' (set_insert x (result state)) then

let new_result = (set_insert x (result state)) in
BestInGreedy (state Lcarrier_list := xs, result := new_resultM)

else BestInGreedy (state Lcarrier_list := xsM)))"

definition "initial_state c order =
Lcarrier_list = (sort_desc c order), result = set_emptyM"

Listing 5 Best-In-Greedy algorithm in Isabelle/HOL and its initial state. Note: for a record r, r
L x:= vM is the same as r, except with the value of x set to v.

order according to the input cost function, and that the sort is stable.
The first important correctness theorem for the Best-In-Greedy algorithm is Lemma 1. It

states that for any nonnegative cost function c and any X which is a valid solution to the
maximisation problem, the cost of the Best-In-Greedy solution is greater than or equal to
the rank quotient of the independence system times the cost of solution X.

▶ Lemma 1 (Best-In-Greedy cost bound[15, 19]). Let (E,F) be an independence system, with
c : E → R+. Let G be the output of BestInGreedy. Then c(G) ≥ q(E,F) · c(X) for all
X ∈ F .

Proof. Let E := {e1, e2, . . . , en}, c : E → R+, and c(e1) ≥ c(e2) ≥ . . . ≥ c(en). Let Gn be
the final solution found by BestInGreedy assuming that the elements are sorted in the given
order, and let Xn be an arbitrary solution. Define Ej := {e1, . . . , ej}, Gj := Gn ∩ Ej and
Xj := Xn∩Ej for j = 0, . . . , n. Set dn := c(en) and dj := c(ej)− c(ej+1) for j = 1, . . . , n−1.

Since Xj ∈ F , we have |Xj | ≤ r(Ej). Since Gj is a basis of Ej , we have |Gj | ≥ ρ(Ej).
Together with the definition of the rank quotient, we can conclude that

c(Gn) =
n∑

j=1
(|Gj | − |Gj−1|)c(ej)

=
n∑

j=1
|Gj |dj ≥

n∑
j=1

ρ(Ej)dj ≥ q(E,F)
n∑

j=1
r(Ej)dj ≥ q(E,F)

n∑
j=1
|Xj |dj

= q(E,F)
n∑

j=1
(|Xj | − |Xj−1|)c(ej) = q(E,F)c(Xn).

◀

Within the appropriate context in the locale Best_In_Greedy (which assumes the three axiom
predicates described above and that c and order are valid), the lemma can be formulated
as in (Listing 6) in Isabelle/HOL. Here, c_set c S denotes the sum of the costs of the
elements in a set S, where the cost function is c. In our formalisation, the proof of this
lemma followed the informal proof, with the main argument of the proof consisting of the
chain of inequalities on sums. Since we do not explicitly store the current iteration number j

in the state, we provide the definition num_iter, which extracts the iteration number from a
given state using the length of the carrier list. The definitions carrier_pref and pref are
used to represent the prefix sets Ej , Gj and Xj .
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lemma BestInGreedy_correct_2:
"valid_solution X =⇒

c_set c (to_set (result (BestInGreedy (initial_state c order)))) ≥
indep_system.rank_quotient (matroid.carrier_abs carrier)

(matroid.indep_abs indep_fn) * c_set c (to_set X)"

Listing 6 The first correctness lemma for the Best-In-Greedy algorithm. t_set is the abstraction
function for the set ADT.

definition "invar_4 c order best_in_greedy_state =
(∀j ∈{0..(num_iter c order best_in_greedy_state)}.

(indep_system.basis_in (matroid.indep_abs indep_fn) (carrier_pref c order j)
(pref c order (to_set (result best_in_greedy_state)) j)))"

Listing 7 The main invariant for the Best-In-Greedy algorithm.

A main statement that is often given without further explanation in informal proofs
is that for all j ∈ {1, . . . , n}, Gj is a basis of Ej . Intuitively, Gj can be seen to be a
maximally independent subset of Ej since it is independent by construction, and since no
potential candidate elements are skipped during the algorithm. However, in the context of
the formalisation, proving this statement requires some more work. In order to be able to use
this fact in the proof, we formulate invariant invar_4, which expresses the desired property.
For the invariant preservation proofs for invar_4, defining some more auxiliary invariants
and proving they are preserved across the algorithm is necessary. These are not part of
the informal proof, since they are either fairly trivial (e.g. showing that result is always a
subset of the current carrier prefix) or aspects specific to the formal proof (e.g. showing that
result always satisfies the set ADT well-formedness invariant). Proving that invar_4 is
preserved across the different execution paths of BestInGreedy then boils down to proving
that if result is a basis of the current carrier prefix, the result set after one state update
will still be a basis of the carrier prefix in the next step. We consider the two recursive cases
of BestInGreedy, in which the current element is either added to result if it preserves
independence, or left out otherwise. The two lemmas required for the invariant proofs in
these two cases are formulated and proved in the context of the abstract indep_system
locale. Through the theorems connecting the implementation of independence systems to
the abstract theory of independence systems, we are able to use these theorems to complete
the invariant preservation proofs of invar_4.

The second important correctness theorem on the Best-In-Greedy algorithm is Lemma 2,
which states that there exists a nonnegative cost function c and a valid solution X for which
the bound from Lemma 1 holds.

▶ Lemma 2 (Best-In-Greedy cost bound tightness[15, 19]). Let (E,F) be an independence
system. There exists a cost function c : E → R+ and X ∈ F s.t. for the output G of
BestInGreedy, c(G) = q(E,F) · c(X).

Proof. Choose F ⊆ E and bases B1, B2 of F such that |B1|
|B2| = q(E,F). Define c(e) := 1 for

e ∈ F , c(e) := 0 for e ∈ E \ F and sort e1, . . . , en such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en) and
B1 = {e1, . . . , e|B1|}. Then c(G) = |B1| and c(X) = |B2|, which finishes the proof. ◀

In our formalisation, this lemma is stated with an additional existential quantifier for the
order parameter. The proof in our formalisation proceeds similarly to the informal proof we
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lemma BestInGreedy_bound_tight:
"(∃c. nonnegative c ∧(∃order. valid_order order ∧(∃X. valid_solution X ∧c_set c

(to_set (result (BestInGreedy (initial_state c order)))) =
indep_system.rank_quotient (matroid.carrier_abs carrier)
(matroid.indep_abs indep_fn) * c_set c (to_set X))))"

Listing 8 The second correctness lemma for the Best-in-Greedy algorithm.

follow, except that we explicitly construct the initial order list and use the stability of the
sorting function to show that the sorting of the elements produces the ordering necessary
for the proof. Additionally, proving that the greedy result is B1 required defining some new
loop invariants and showing that they are preserved across the algorithm.

The final correctness theorem on the Best-In-Greedy algorithm concerns the relationship
between the performance of the algorithm and matroids:

▶ Theorem 3 (Characterisation of matroids, Edmonds-Rado[32, 11]). An independence sys-
tem (E,F) is a matroid if and only if BestInGreedy finds an optimal solution for the
maximisation problem for (E,F , c) for all cost functions c : E → R+.

Proof. By Lemma 1 and Lemma 2 we have q(E,F) < 1 if and only if there exists a cost
function c : E → R+ for which BestInGreedy does not find an optimum solution. Using
the fact that q(E,F) < 1 if and only if (E,F) is not a matroid completes the proof. ◀

Instantiation for Spanning Forests and Oracles For an undirected graph G with a
set of edges E, a spanning tree T is an acyclic subgraph connecting all vertices of G to one
another. A spanning forest is acyclic and connects all vertices that are connected via E.

The set of edges E in undirected graphs forms a matroid under acyclicity, i.e. where the
sets of edges forming acyclic components is the independence set. This is a so-called graphic
matroid and it is a widely cited example of matroids [21, 34]. Acyclicity of sets X ⊆ E

indeed satisfies the matroid axioms and a circuit would be a cycle in the ordinary sense. We
formalise this in Isabelle/HOL, including the equivalence of being a basis w.r.t. acyclicity
and being a spanning forest, making the greedy algorithm suitable to solve the minimum
spanning forest problem correctly.

The instantiation of the Best-In-Greedy algorithm for graph matroids is also known as
Kruskal’s Algorithm [22]. An independence oracle could check for the absence of cycles by
a modified Depth-First Search (DFS). Since the independence of the current solution X

is maintained as an invariant, it is enough to check that a new element x does not lead
to circuits in X ∪ {x}, i.e. a new edge e does not add a cycle in the case of the graphical
matroid. We call this a weak oracle. It would be simpler to implement and to verify, and
it might even allow for running time improvements e.g. if available, by using a union-find
structure to store connected components of X.

We therefore have an extended locale that also specifies the behaviour of a weak oracle,
which is that if (a) X is independent and if (b) suitable data structure and auxiliary invariants
are satisfied and (c) x ̸∈ X, then the oracle tells correctly whether X ∪ {x} is independent.
Subsequently, we verify the greedy algorithm with a weak oracle and prove it equivalent to
the first version when called on the empty set. As a result, correctness can be lifted. In the
end, we obtain an executable algorithm for minimum spanning forests using a simple DFS
as weak oracle. A simplified version of the correctness theorem for Kruskal’s Algorithm is
stated in Listing 9. The obtained implementation has a running time of O(n2 · log2 n).
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definition "max_forest X = (is_spanning_forest(t_set input_G) X ∧
(∀ Y. is_spanning_forest (t_set input_G) Y −→sum c Y ≤sum c X))"

corollary kruskal_computes_max_spanning_forest:
"max_forest(t_set (result (kruskal input_G (kruskal_init c order))))"

Listing 9 Kruskal’s algorithm’s correctness (simplified).

3.3 Greedy Algorithm for Greedoids
Greedoids are a generalisation of matroids. Their definition (conditions (M1) and (M3)) is
obtained by dropping the (M2) from the definition of matroids. Similar to matroids, we use
a locale to define greedoids, fixing the carrier set, its family of independent subsets, and
specifying the axioms of greedoids. Their intuition is derived from the edge set of undirected
trees containing a fixed vertex r of an undirected graph and its total set of edges.

Our formalisation of greedoids contains accessible set systems (a set system in which
every independent set contains an element removing which the resulting set continues to be
independent) and antimatroids (accessible set systems closed under union) as well as the
relationships between greedoids, accessible set systems and antimatroids. This is used to
prove the correctness of the greedy algorithm for greedoids. Note: we formalise set systems
anew because the existing formalisation of independence systems [16] uses a finite carrier set
along with the independence predicate. Their formalisation was designed to be extended to
matroids using the augmentation property, which would not have worked for greedoids.

We now consider the optimisation of modular weight functions c : 2E → R on greedoids.
Modular weight functions satisfy c(A ∪ B) = c(a) + c(B) − c(A ∩ B) for all A, B ⊆ E.
The algorithm GreedoidGreedy keeps track of a current solution X ∈ F , initially ∅. In
every iteration, it searches E in the order e1, ..., en for an x s.t. x ̸∈ X and X ∪ {x} ∈ F
(’candidate’). It takes the first candidate in e1, ..., en such that c({x}) ≥ c({y}) for all other
candidates y (’candidate search’). If there is no candidate x, the procedure terminates.
Otherwise the first best candidate is inserted into X, followed by the next iteration. Similar
to Theorem 3, one can characterise certain greedoids with that algorithm.

▶ Theorem 4 (Characterisation of Strong-Exchange Greedoids [20]). First, we say that a
greedoid (E,F) has the strong exchange property (SEP) iff for all A, B ∈ F , B basis
w.r.t F , A ⊆ B and x ∈ E \ B with A ∪ {x} ∈ F , there is y with A ∪ {y} ∈ F and
(B − {y}) ∪ {x} ∈ F . GreedoidGreedy computes a maximum-weight basis in F for any
order of iteration e1, ..., en and any modular cost function c : 2E → R iff (E,F) has the SEP.

For the second direction (⇐), the usual proof is by constructing a counterexample to
show the contrapositive. This heavily depends on the order e1, ..., en for candidate search.
In Isabelle/HOL (Listing 10), both costs and the order (formalised as a list) are fixed by a
context in which the algorithm is modelled, making e1, ..., en an input to the algorithm, as
well. For the sake of brevity we cannot give further details neither on the informal nor the
formal proof and the reader may refer to the formalisation instead.
Executability In Isabelle/HOL, we give an executable function that is equivalent to the
one in Listing 10. However, candidate search is not performed on all e ∈ E. For the current
solution X, it only checks those e where e ∈ E \X to find a best candidate.
Instantiation An arborescence T around a vertex r in a graph with edges E is an acyclic,
connected subgraph of E that contains r. If r is in the vertices on which edges in E are
incident, the set of arborescences around r forms a greedoid. Bases are spanning trees of the
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definition "set_system E F = (finite E ∧(∀ X ∈F. X ⊆E))"

locale greedoid = fixes E ::"'a set" and F ::"'a set set"
assumes contains_empty_set: "{} ∈F"
assumes third_condition:

"
∧

X Y. X ∈F =⇒Y ∈F =⇒card X > card Y =⇒∃x ∈X - Y. Y ∪{x} ∈F"
assumes ss_assum: "set_system E F"

locale greedoid_algorithm = greedoid + (*Specification of oracles*) begin
context fixes es and c begin
definition "find_best_candidate X= foldr

(λ e acc. if e ∈X ∨¬orcl e X then acc
else (case acc of Some d ⇒(if c {e} > c {d} then Some e else Some d))

| None ⇒Some e) es None"
function greedoid_greedy::"'a list ⇒'a list" where

"greedoid_greedy xs = (case (find_best_candidate (set xs))
of Some e ⇒greedoid_greedy (e#xs) | None ⇒xs)"

end

theorem greedoid_characterisation: "strong_exchange_property E F ←→
(∀ c es. valid_modular_weight_func E c ∧E = set es ∧distinct es
−→opt_basis c (set (greedoid_greedy es c Nil)))"

Listing 10 Formalisation of greedoids, GreedoidGreedy, and the characterisation theorem.

connected component of r in E. The arborescence greedoid has strong exchange, making the
instantiation of GreedoidGreedy, namely, the Jarnik-Prim Algorithm [31] optimal. We
obtain a simple O(n · |E| · log n) implementation to compute maximum weight bases where
n is the number of vertices in the component around r.

4 Matroid Intersection

The maximum cardinality matroid intersection problem asks for an X of maximum cardinality
in F1 ∩ F2 for two matroids (E,F1) and (E,F2). A formal definition reusing the matroid
locale [16] is given in Listing 11. BestInGreedy from the last section adds an element
if the solution remains independent. For intersection, adding an element might preserve
independence w.r.t. F1 but not F2. The insight is thus to add an element, then potentially
remove an element to maintain independence w.r.t. F2, then insert another element. This
three-step process is repeated until an element is added that preserves independence w.r.t.
both F1 and F2. The repetition of this process to improve the solution is called augmentation.

The following is an optimality criterion for matroid intersection that involves ranks.

▶ Lemma 5 (Rank Criterion, Edmonds’ Intersection Theorem [12]). For two matroids (E,F1)
and (E,F2) over the same ground set E with rank functions r1 and r2, respectively, X ∈
F1∩F2, and Q ⊆ E it holds that |X| ≤ r1(Q)+r2(E\Q). Therefore, |X| ≤ r1(X)+r2(E\X),
for any X ∈ F1 ∩ F2.

Proof. Both X∩Q and X\Q are independent in both matroids. This implies |X∩Q| ≤ r1(Q)
and |X \Q| ≤ r2(E \Q). Both inequalities follow from the fact that |Y | ≤ r(Z) if Y ⊆ Z

and Y independent, which essentially follows from the definition of the rank r in a matroid.
Of course, |X ∩Q|+ |X \Q| = |X|. ◀
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locale double_matroid = matroid1: matroid carrier indep1
+ matroid2: matroid carrier indep2

begin
...
definition "is_max X = (indep1 X∧indep2 X∧∄Y. indep1 X∧indep2 X∧card Y > card X)"
definition "A1 =
{(x, y) | x y. y ∈carrier - X ∧x ∈matroid1.the_circuit (insert y X) - {y}}"
definition "A2 = ..."
definition "S = {y | y. y ∈carrier - X ∧indep1 (insert y X)}"
...
context assumes "indep1 X" "indep2 X"
lemma augment_in_both_matroids:

assumes "∄ q. vwalk_bet (A1 ∪A2) x q y ∧length q < length p" "x ∈S" "y ∈T"
"vwalk_bet (A1 ∪A2) x p y" "X' = ((X ∪{p ! i | i. i < length p ∧even i})

- {p ! i | i. i < length p ∧odd i})"
shows "indep1 X'" and "indep2 X'" and "card X' = card X + 1"

...
theorem maximum_characterisation:

"is_max X ←→¬ (∃ p x y. x ∈S ∧y ∈T ∧(vwalk_bet (A1 ∪A2) x p y ∨x= y))"

Listing 11 Augmentation and Matroid Intersection.

The rank criterion cannot be exploited immediately for an algorithm since it does not
have an immediate computational interpretation. It can be turned into a criterion that is
computationally useful using augmentation, which we do in the next section.

4.1 Augmentation
Fix a single matroid (E,F). For X ∈ F , x ̸∈ X and X ∪ {x} ∈ F there is a unique circuit in
X∪{x}. If there were two of these C1, C2, there would be a third one C3 ⊆ C1∪C2\{x} ⊆ X,
since both C1 and C2 need to contain x. Let C(X, x) be this unique circuit if X ∪ {x} ∈ F ,
or ∅, otherwise. We observe that if x ∈ C(X, y) and X ̸∋ y ̸= x ∈ X, then x can be replaced
by y, i.e. (X \ {x}) ∪ {y} is independent. Under certain conditions, this replacement can be
repeated as shown by the following lemma:

▶ Lemma 6 (Replacement Lemma [13]). For a matroid (E,F) and X ∈ F , if (1) x1, ..., xs ∈
X, (2) y1, ..., ys ∈ E \X, (3) xk ∈ C(X, yk), for all 1 ≤ k ≤ s and (4) xj ̸∈ C(X, yk), for all
1 ≤ j < k ≤ s. Then, (X \ {x1, ..., xs} ∪ {y1, ..., ys}) ∈ F .

Proof. We show independence of Xl := (X \ {x1, ..., xl}) ∪ {y1, ..., yl} for l ≤ s by induction.
The theorem trivially holds for l = 0. We assume the claim for Xl where 0 < l < s: It
might be that Xl ∪ {yl+1} is independent implying independence of Xl+1 because of (M2).
If Xl ∪ {yl+1} is dependent, however, it contains a unique circuit C(Xl, yl+1) containing yl+1
due to Xl’s independence. All deleted x1, ..., xl cannot have been part of C(X, yl+1) because
of (4) and neither any inserted y1, ..., yl because of (2), yl+1 could, however. This implies
C(X, yl+1) ⊆ Xl+1. Therefore C(Xl, yl+1) = C(X, yl+1). Due to (3), xl+1 ∈ C(X, yl+1),
implying independence of (Xl \ {xl+1}) ∪ {yl+1} = Xl+1. ◀

The formalisation of the above lemma contains an inductive proof on s within the context of
the matroid locale matroid. The xis and yis are formalised as a list of pairs.

From now on, we assume two matroids (E,F1) and (E,F2) over the same ground set E, or
formally, we work in the double_matroid locale (Listing 11). For a set X ∈ F1∩F2, we define
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an auxiliary graph GX with vertices E and edges AX,1 ∪ AX,2 where AX,1 = {(x, y) . y ∈
E\X∧x ∈ C1(X, y)\{y}} and AX,2 = {(y, x) . y ∈ E\X∧x ∈ C2(X, y)\{y}}. GX is obviously
bipartite between X and E \X. We define two sets SX = {y. y ∈ E \X ∧X ∪ {y} ∈ F1}
and TX = {y. y ∈ E \X ∧X ∪ {y} ∈ F2}. A path between a vertex from SX and another
from TX indicates an alternating sequence of insertion and deletion. Due to bipartiteness,
the length will be odd allowing for an augmentation. We make this precise as follows.

▶ Lemma 7 (Augmentation Lemma). Let X ∈ F1 ∩ F2 be independent in both matroids
and p = y0x1y1x2y2...xsys a shortest path from y0 ∈ SX to ys ∈ TX . Then X ′ = (X ∪
{y0, ..., ys}) \ {x1, ..., xs} is independent in both matroids, i.e. X ′ ∈ F1 ∩ F2.

Proof. We apply Lemma 6 to X ∪ {y0}, x1, ..., xs and y1, ..., ys to show X ′ ∈ F1: For all
0 < i ≤ s, xi is the second vertex of the (2i− 1)th edge of p. Because the path alternates
between E \X and X, the (2i− 1)th is in AX,2 and xi ∈ X ∪ {y0} for all xi, yielding (1).
For all 0 < i ≤ s, yi is the second vertex of the (2i)th edge in p. Because of alternation and
pairwise distinctness of the ys (p is shortest path), yi ∈ E \ (X ∪ {y0}), implying (2). Also,
for all 0 < i ≤ s, xi is the first vertex of the (2i)th edge, which is part of AX,1 because of
alternation. Therefore, xk ∈ C1(X ∪ {y0}, yk) for all 1 ≤ k ≤ s (3). We assume an xi and xj

where 0 < j < i ≤ s and xj ∈ C1(X ∪ {y0}, yi). xi or xj is the first vertex of the 2ith of 2jth
edge of p, respectively. yj and yi are the second vertices. Both of those edges are part of
AX,1. As yi ∈ E \X, and therefore xj ̸= yi, the edge (xj , yi) ∈ AX,1. We could then delete
yj , ..., xi−1 giving a shorter SX -TX -path. Hence (4) is satisfied and Lemma 6 can be applied.

Analogously, we take X ∪ {ys}, xs, ..., x1 and ys−1, ..., y0 to show X ′ ∈ F2. ◀

The pairs of xs and ys are formalised as a zipped list. As indexing starts at 0 in Isabelle/HOL,
the indices are often off by 1. The statement is in Listing 11.

On top of improvement by augmentation, the absence of an augmenting path characterises
maximality of |X| for X ∈ F1 ∩ F2:

▶ Theorem 8 (Optimality Criterion). X is a set of maximum cardinality in F1 ∩ F2 iff
the GX does not contain a path from some s ∈ SX to some t ∈ TX (henceforth, an
SX − TXpath). Edmonds’ max-min-equality [12] is a corollary: max{|X|. X ∈ F1 ∩ F2} =
min{r1(Q) + r2(E \Q). Q ⊆ E}.

Proof. If there is an SX -TX path, there is a shortest one as well, which could be used for an
augmentation according to Lemma 7, leading to an increase in the cardinality.

Now assume, that there is no SX -TX path. We define R as the set of vertices in GX that
are reachable from SX . Obviously SX ⊆ R and R ∩ TX = ∅. There are rank functions r1
and r2 w.r.t. F1 and F2, respectively.

We prove r2(R) = |X ∩R| by contradiction: Since X ∩R has to be independent w.r.t. the
second matroid and therefore |X ∩R| = r2(X ∩R), we would have r2(X ∩R) < r2(R) since
r2 is monotone. Because of the strict inequality, there is y ∈ R \X where (X ∩R)∪{y} ∈ F2.
Otherwise, X ∩R would be a basis of R implying equal ranks. As R∩TX = ∅, X ∪{y} ̸∈ F2.
There is x ∈ X \ R with x ∈ C2(X, y) (Otherwise (X ∩ R) ∪ {y} ̸∈ F2). By definition,
(y, x) ∈ AX,2. That makes x part of R, which is a contradiction.

We prove r1(E \X) = |X \R| by contradiction: Since X \R has to be independent w.r.t.
the first matroid and therefore |X \R| = r1(X \R), we would have r1(X \R) < r1(E \R)
since r1 is monotone. Because of the strict inequality, there is y ∈ (E \ R) \ X where
(X \R) ∪ {y} ∈ F1. Otherwise, X \R would be a basis of E \R implying equal ranks. As
SX ⊆ R, X∪{y} ̸∈ F1. There is x ∈ X∩R with x ∈ C1(X, y) (Otherwise (X \R)∪{y} ̸∈ F1).
By definition, (x, y) ∈ AX,1. That makes y part of R, which is a contradiction.



Author: Please fill in the \authorrunning macro 23:13

Therefore, |X| = r1(E \X) + r2(X). Because of the rank criterion from Lemma 5, X

satisfies |X| ≤ r1(Q) + r2(E \Q) with equality. This gives the max-min equality and makes
X a set of maximum cardinality that is independent w.r.t. both matroids. ◀

The formal proof of Theorem 8 is split in two directions. The second direction also shows
r2(R) = |X ∩R|, r1(E \X) = |X \R| and |X| = r1(E \X) + r2(X) as statements to prove
the max-min equality separately. The final formalisation can be seen in Listing 11.

4.2 Intersection Algorithm
We exploit the previous subsection’s results for an algorithm [6, 24] that iteratively applies
augmenting paths to solve maximum cardinality matroid intersection. The main invariant
of the algorithm MaxMatroidIntersection is X ∈ F1 ∩ F2 for the current solution X.
Algorithm 2 contains the pseudocode. In our main reference [21], the circuits C1/2(X, y), which
are minimal dependent sets, are computed as explicit sets by iterating over all x ∈ X ∪ {y}
and taking those where X ∪ {y} \ {x} is independent. GX is then computed by using the
definition from above which requires further iterations over the circuits. Our pseudocode
does not need the circuits as an intermediate step and adds an edge (x, y) or (y, x) if X ∪{y}
is dependent or X \ {x} ∪ {y} is independent, respectively.

Algorithm 2 MaxMatroidIntersection(E, F1, F2)

1 Initialise X ← ∅;
2 while True do
3 compute GX : Initialise SX ← ∅; TX ← ∅; AX,1 ← ∅; AX,2 ← ∅;
4 for y ∈ E \X do
5 if X ∪ {y} ∈ F1 then SX ← SX ∪ {y};
6 else for x ∈ X do [ if X \ {x} ∪ {y} ∈ F1 then AX,1 ← AX,1 ∪ {(x, y)};]
7 if X ∪ {y} ∈ F2 then TX ← TX ∪ {y};
8 else for x ∈ X do [ if X \ {x} ∪ {y} ∈ F2 then AX,2 ← AX,2 ∪ {(y, x)}; ]
9 if ∃ path leading from SX to TX via the edges in AX,1 ∪AX,2 then

10 find a shortest path P = y0x1y1...xsys leading from SX to TX ;
11 augment along P : X ← X ∪ {y0, ..., ys} \ {x1, ..., xs};
12 else return X as maximum cardinality set in F1 ∩ F2;

MaxMatroidIntersection is again formalised within a locale that assumes the neces-
sary subprocedures, most notably a function find_path for path selection. This will take
the graph GX as an adjacency map. We also have two weak independence oracles orcl1
and orcl2, one for each matroid. We assume a Haskell-style outer_fold and inner_fold
to simulate for-loops over sets in the functional language of Isabelle/HOL. We furthermore
have a function to complement sets for the term E \X.

Listing 12 shows the formalisation of the for-loops. treat1 and treat2 simulate the
for-loops in Line 6 and Line 8, respectively. The outer for-loop extending from Lines 4 to 8 is
realised by compute_graph. We also have a simple function augment performing the augment-
ation, i.e. alternating deletion and insertion to a set. The function matroid_intersection
(while loop) calls the graph computation, gives AX,1∪AX,2, SX and TX to the path selection
function and terminates or calls augmentation according to the result of path selection. It
maps the solution X before entering the loop to the X after finishing the loop. We use a
record with a single variable for the current solution.
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definition "treat1 y X init_map = inner_fold X (λ x edges.
if weak_orcl1 y (set_delete x X) then add_edge edges x y else edges) init_map"

definition "treat2 y X init_map = ..."
definition "compute_graph X E_without_X =
outer_fold E_without_X (λ y (SX, TX, edges). (
let (SX, TX, edges) = (if weak_orcl1 y X then (insert y SX, TX, edges)

else (SX, TX, treat1 y X edges));
(SX, TX, edges) = (if weak_orcl2 y X then (SX, insert y TX, edges)

else (SX, TX, treat2 y X edges))
in (SX, TX, edges))) (vset_empty, vset_empty, empty)"

fun augment where ...

function (domintros) matroid_intersection::"'mset intersec_state⇒ 'mset
intersec_state" where

"matroid_intersection state =
(let X = sol state; (SX, TX, graph) = compute_graph X (complement X) in

(case find_path SX TX graph of None ⇒state |
Some p ⇒matroid_intersection (state Lsol := augment X pM) ))"

definition "initial_state = Lsol= set_empty M"

Listing 12 Formalisation of the Intersection Algorithm.

Again, we use invariants for loop verification. We have independence of X as the major
invariant and data structure well-formedness invariants as minor ones. As in the case of
BestInGreedy, we use the approach of proving single-step preservation for execution
paths that is combined by an induction. The first lemma in Listing 13 says that by
executing one step (a) X remains in F1 ∩ F2, (b) X continues to satisfy its data structure
invariant, (c) X ⊆ E, (d) X’s cardinality increases by 1 and (e) neither SX nor TX are
empty. The Listing also contains the lemma certifying optimality if the terminating branch
of matroid_intersection is taken. The second lemma together with (a), (b) and (c)
can be combined by the induction principle into correctness for general inputs X. When
(d) and (e) are used, there is termination. Finally, one can prove total correctness when
matroid_intersection is called on initial_state.
Running Time and Circuit Oracles The number of iterations to build GX is O(|E|2).
Each matroid comes with an oracle which is assumed to be ι1 or ι2, respectively. This
results in O(|E|3 · (ι1 + ι2)) overall running time. We might have to check |X| · (|E| − |X|)
pairs of vertices. If - depending on the problem - the size of the circuits σ1 and σ2 is
assumed small, e.g. O(log |E|), most of the inner for-loops’ iterations were wasted. If the
circuits can be computed in time κ1, κ2 ∈ o(|E|), the time would be the more efficient
O(|E|2 · (ι1 + ι2 + κ1 + κ2 + σ1 + σ2)).

In Isabelle/HOL, weak circuit oracles are assumed to return data structures storing
C1/2(X, y) \ {y} provided that X is independent and X ∪ {y} is dependent. These are added
to the locale for MaxMatroidIntersection, as well. A variant of the algorithm using
circuit oracles is verified using the same methodology as before.
Selecting an SX-TX Path There is a verified implementation of Breadth-First Search (BFS)
that works on adjacency maps by Abdulaziz [29]. It takes a set of sources and builds another
adjacency map modelling a DAG of those edges that are actually explored by the search. If
a vertex v is reachable from a source s, there is a path p in this DAG leading from a source
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definition "indep_invar state =
(indep1 (to_set (sol state)) ∧(indep2 (to_set (sol state))))"

lemma indep_invar_recurse_improvement:
assumes "matroid_intersection_recurse_cond state" "indep_invar state"

"set_invar (sol state)" "to_set (sol state) ⊆carrier"
shows "indep_invar (matroid_intersection_recurse_upd state)"

"set_invar (sol (matroid_intersection_recurse_upd state))"
"to_set (sol (matroid_intersection_recurse_upd state)) ⊆carrier"
"card (to_set (sol (matroid_intersection_recurse_upd state)) =

card (to_set (sol state)) + 1"
"S (to_set (sol state)) ̸={}" "T (to_set (sol state)) ̸={}"

lemma indep_invar_max_found:
assumes "matroid_intersection_terminates_cond state" "indep_invar state"...
shows "is_max (to_set (sol state))"

lemma matroid_intersection_correctness_general:
assumes "indep_invar state" "set_invar (sol state)" "to_set (sol state) ⊆carrier"

shows "is_max (to_set (sol (matroid_intersection state)))"

lemma matroid_intersection_terminates_general:
assumes "indep_invar state" "set_invar (sol state)" "to_set (sol state) ⊆carrier"

"m = card carrier - card (to_set (sol state))"
shows "matroid_intersection_dom state"

lemma matroid_intersection_total_correctness:
"is_max (to_set (sol (matroid_intersection initial_state)))"
"matroid_intersection_dom initial_state"

Listing 13 Invariants, Termination and Total Correctness of the Intersection Algorithm. Note
that f_dom input for a function f means that f terminates on input.

s′ to v such that p is a shortest path in the actual graph leading from s′ to v. find_path
runs BFS for the sources SX and uses a DFS to obtain a path in the DAG and, hence, a
shortest SX -TX path. For a concrete intersection problem and together with appropriate
oracles, find_path can be used to instantiate the locale of the intersection algorithm.
Bipartite Matching An example for matroid intersection is maximum cardinality bipartite
matching. Consider a bipartite graph with edges E between two disjoint sets of vertices L and
R. For e ∈ E, we call the endpoint in L the left and the one in R the right endpoint. We say
that M ⊆ E is independent w.r.t. L iff no edges in M share a left endpoint. Independence
w.r.t. R is defined analogously. Valid matchings are sets of vertex-disjoint edges in E and
are thus exactly those M that are independent w.r.t. both L and R. The two independence
predicates satisfy the matroid axioms making this a matroid intersection problem. Circuits
w.r.t. L or R would be edges e, d ∈ E sharing a left or right endpoint, respectively.

For M ⊆ E, we maintain a set data structure [M ], two maps ML and MR, where ML

associates every x ∈ L with e ∈M for which x is the left endpoint, and analogously for MR.
Weak independence and circuit oracles are very simple: If M is independent w.r.t. L (R), and
e ̸∈M , we check in ML (MR) that e’s left (right) endpoint is not associated to any another
edge. If M∪{e} would be dependent w.r.t. L or R, we would return the edges associated to e’s
left or right endpoint as CL(M, e)\{e} or CR(M, e)\{e}, respectively. We used these oracles to
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instantiate MaxMatroidIntersection to compute maximum matchings in bipartite graphs.
The running time is O(min{|L|, |R|} ·m · (log |R|+ log |L|+ log m)) where the logarithms are
due to using tree data structures, which is dominated by O(n ·m · (log n + log m)). Without
circuit oracles, we would have another multiplicative factor of min{|L|, |R|}.

5 Discussion

We presented a formal analysis of algorithms to solve two optimisation problems for matroids:
(a) computing the largest (in terms of accumulated weight) independent set in a given matroid
and (b) computing the largest (in terms of cardinality) set that is independent w.r.t. two
matroids. The two algorithms are of great importance to practitioners and are implemented
in a number of computer algebra systems, e.g. in Sage [1] and Macaulay [2]. Additionally,
we also briefly (due to space constraints) presented a formalisation of the analysis of an
algorithm to solve an optimisation problem for greedoids, which are a generalisation of
matroids. In addition to formalising significant parts of the theory of matroids, greedoids,
and the analysis of the algorithms, we showed that our approach can also be used to
obtain practical executable verified implementations of important graph algorithms. This
demonstrates the potential practical role of matroids and greedoids to design well-factored
formal mathematical libraries whereby proofs of multiple algorithms are done in one go that
captures their mathematical essence, and that is later instantiated for different concrete
examples. The formalisation overall totalled 17.4K lines of proof script, with 11K lines
dedicated to the theory of matroids and greedoids, 2.9K lines connecting graph theoretic
problems to matroids and/or greedoids, and 3.5K lines on defining and verifying Kruskal’s,
Prim’s, and the bi-partite matching algorithm. Our formalisation builds on and is part of an
ongoing effort to formalise combinatorial optimisation in Isabelle/HOL[4].
Related work Most relevant to us is the formalisation of matroids in Isabelle/HOL by
Keinholz [16]. Haslbeck et al. [14] formalised a classic proof of the correctness of the
Best-In-Greedy Algorithm and obtained a verified, imperative implementation of Kruskal’s
algorithm. They used a weak oracle based on a verified imperative union-find implementation
by Löwenberg [25] to store the tree’s connected components leading to their implementation
having the best possible running time of O(mα(n)), where α is the inverse Ackermann
function. In Lean, there is an ongoing effort to formalise matroid theory [28], including
more advanced results about e.g. minors, isomorphism, Tutte’s excluded minor theorem
for finitary binary matroids, or Edmonds’ Intersection Theorem (Lemma 5), but (as of the
time of writing) there seems to be no verified practical algorithms in that library. Matroids
were also formalised in Coq [26, 9] and Mizar [8], however, both do not go very far. Set
systems were formalised in Isabelle/HOL by Edmonds and Paulson [10], who did that in the
context of verifying combinatorial designs. Additionally, there are formalisations of matching
algorithms [3, 5] and Prim’s algorithm [23], in Isabelle/HOL, and of Dijkstra, Kruskal, and
Prim [27], in Coq, that are not based on matroids or greedoids, where all reasoning is done at
the graph-theoretic level. Readers interested in comparing the style of formal reasoning when
using matroids or greedoids, which is algebraic, to the one performed directly on graphs,
which is more intuitive but combinatorial, should refer to those formalisations.
Future work There is one ’main’ missing algorithm from our library which would be the
most imminent piece of future work: the weighted version of the matroid intersection problem,
whereby, instead of finding the largest cardinality set that is independent w.r.t. two matroids,
one is to find the largest in terms of the weight of such a set, for a modular cost function.

Routine functions that check whether a matroid indeed satisfies the assumptions of a
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matroid, compute the dual of a matroid, etc., which are implemented in most computer
algebra packages, are missing from our library and are an important next step for our work.
Naive implementations of those functions would have a worst-case exponential running time,
so utilising sophisticated enumeration algorithms [17, 18] would help with making that more
practical.
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