
Formally Verified Approximate Policy Iteration

Maximilian Schäffeler1, Mohammad Abdulaziz2

1Technische Universität München, Germany
2King’s College London, United Kingdom

maximilian.schaeffeler@tum.de, mohammad.abdulaziz@kcl.ac.uk

Abstract

We present a methodology based on interactive theorem prov-
ing that facilitates the development of verified implemen-
tations of algorithms for solving factored Markov Decision
Processes. As a case study, we formally verify an algorithm
for approximate policy iteration in the proof assistant Is-
abelle/HOL. We show how the verified algorithm can be re-
fined to an executable, verified implementation. Our evalua-
tion on benchmark problems shows that it is practical. As part
of the development, we build verified software to certify lin-
ear programming solutions. We discuss the verification pro-
cess and the modifications we made to the algorithm during
formalization.

Code — https://github.com/schaeffm/fmdp isabelle

Introduction
Markov Decision Processes (MDPs) are models of proba-
bilistic systems, with applications in AI, model checking,
and operations research. In AI, for instance, given a descrip-
tion of the world in terms of states and actions that can
change those states in a randomised fashion, one seeks a pol-
icy that determines the actions chosen in every state, with the
aim of accruing maximum reward. There is a large number
of methods to solve MDPs, most notably, value and policy it-
eration, which compute policies with optimality guarantees.

In many applications in AI or autonomous systems (Lahi-
janian et al. 2010; Junges et al. 2018), obtaining an opti-
mal policy is safety-critical, with the goal of e.g. minimiz-
ing the number of accidents. One important aspect here is
the assurance that the output of the MDP solving system is
correct. Such assurance is currently attained to some degree
by testing and other software engineering methods. How-
ever, the best guarantee can be achieved by mathematically
proving the MDP solver and the underlying algorithm cor-
rect. A successful way of mathematically proving correct-
ness properties of (i.e. formally verifying) pieces of soft-
ware is using Interactive Theorem Provers (ITPs), which
are formal mathematical systems that one can use to de-
vise machine-checked proofs. Indeed, ITPs have been used
to prove correctness properties of compilers (Leroy 2009),

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

operating systems kernels (Klein et al. 2009), model check-
ers (Esparza et al. 2013), planning systems (Abdulaziz and
Lammich 2018; Abdulaziz and Koller 2022; Abdulaziz and
Kurz 2023), and, most related to the topic of this work, al-
gorithms to solve MDPs (Schäffeler and Abdulaziz 2023).
A challenge with using ITPs to prove algorithms correct,
nonetheless, is that they require intense human intervention.
Thus for an ITP to be successfully employed in a serious ver-
ification effort, novel ideas in the design of the software to
be verified as well as the underlying proof have to be made.

In this paper, we consider formally verifying algorithms
for solving factored MDPs. A challenge to using MDPs to
model realistic systems is their, in many cases, enormous
size. For such systems, MDPs are succinctly represented
as factored MDPs. The system’s state is characterised as
an assignment to a set of state variables and actions are
represented in a compact way by exploiting the structure
present in the system. Such representations are common in
AI (Guestrin et al. 2003; Sanner 2010; Younes and Littman
2004) and in model checking (Hinton et al. 2006; Dehnert
et al. 2017). Although ITPs have been used prove the cor-
rectness of multiple types of software and algorithms, in-
cluding algorithms on MDPs, algorithms on factored MDPs
are particularly challenging. The root of this difficulty is
that the succinctness of the representation comes at a cost.
Naively finding a solution for a factored MDP could entail
the construction of structures exponentially bigger than the
factored MDP. This necessitates using advanced data struc-
tures, heuristics and computational techniques, to avoid that
full exponential blow up.

Our main contribution is that we develop a methodology
based on using the Isabelle locale system, to structure the
MDP solving algorithm into parts amenable to verification.
To enable this methodology, we build a formal mathemati-
cal library allowing the specification of algorithms for solv-
ing factored MDPs and their properties, like algorithms for
planning under uncertainty and probabilistic model check-
ing. We also develop a number of reusable building blocks
to be used in other algorithms, e.g. a certificate checker for
linear programming solutions. Potential targets for formal-
ization include probabilistic model checking, planning and
reinforcement learning algorithms (Hartmanns et al. 2023;
Keller and Eyerich 2012). We describe the methodology in
terms of the verification of Guestrin et al.’s approximate pol-

icy iteration algorithm in the Isabelle theorem prover.
This algorithm computes approximate policies, i.e. sub-

optimal policies with guarantees on their optimality, for one
type of factored MDPs. The algorithm we consider com-
bines scoped functions and decision lists, which are data
structures that exploit the factored representation, linear pro-
gramming, in addition to probabilistic reasoning and dy-
namic programming. The combination of this wide range of
mathematical/algorithmic concepts and techniques is what
makes this algorithm particularly hard from a verification
perspective. To get an idea of the scale, we advise the reader
to look at Fig. ??, which shows the hierarchy of concepts and
definitions which we had to develop (aka formalize) within
Isabelle/HOL to be able to state the algorithm and prove its
correctness statement. This is, of course, in addition to the
notions of analysis, probabilities, and MDPs, which already
exist in Isabelle/HOL. Furthermore, to be able to prove the
algorithm correct, we had to design an architecture of the im-
plementation that makes verification feasible. Our architec-
ture mixes verification and certification: we verify the entire
algorithm, and build a verified certificate checker for linear
programming solutions that delivers formal guarantees. In
addition to proving the algorithm correct, we obtain a for-
mally verified implementation, that we experimentally show
to be practical. Our work, as far as we are aware, is the first
work on formally verifying algorithms for factored MDPs.

Background
We introduce the interactive theorem prover Isabelle/HOL,
our formal development of factored MDPs relate it to exist-
ing formalizations in Isabelle/HOL.

Isabelle/HOL
An ITP is a program that implements a formal mathemati-
cal system, in which definitions and theorem statements can
be expressed, and proofs are constructed from a set of ax-
ioms. To prove a fact in an ITP, the user only provides the
high-level steps while the ITP fills in the details at the level
of axioms. Specifically, our developments use the interactive
theorem prover Isabelle/HOL (Nipkow, Paulson, and Wen-
zel 2002) based on Higher-Order Logic, a combination of
functional programming with logic. Isabelle is highly trust-
worthy, as the basic inference rules are implemented in a
small, isolated kernel. Outside the kernel, several tools im-
plement proof tactics, data types, recursive functions, etc..

Our presentation of definitions and theorems here devi-
ates slightly from the formalization in Isabelle/HOL. Specif-
ically, we use subscript notation for list indexing and some
function applications. We use parentheses for function ap-
plication. For a list xs , len(xs) returns the length, while xs :i
returns the first i elements of xs . List concatenation is writ-
ten as xs·ys , x :: xs inserts x at the front of the list xs ,
map(f, xs) applies f to every element of xs . Finally, N<i

is short for the first i natural numbers (including 0).

Factored MDPs
Factored MDPs are compactly represented MDPs that ex-
ploit regularities in large MDPs, which can often lead to

an exponential reduction in the size of the model. Com-
mon formats to store factored MDPs include JANI (Budde
et al. 2017), the PRISM language (Hinton et al. 2006),
and RDDL (Sanner 2010). We implement the factoring de-
scribed in (Guestrin et al. 2003). In Isabelle/HOL, we define
factored MDPs using locales (Ballarin 2014). A locale intro-
duces a mathematical context with constants and assump-
tions, in which we develop our formalization. Locales can
be instantiated with concrete constants and a proof that dis-
charges the assumptions of the locale, yielding all the theo-
rems proved within the locale. For example, we instantiate
the MDP locale from Schäffeler and Abdulaziz with the fac-
tored systems introduced in this section, and are therefore
able to reuse important definitions and theorems. Moreover,
reducing factored MDPs to a tested and reviewed library en-
hances confidence in our definitions.

State Space A state of a factored MDP is an assignment of
values to its n state variables. Each state variable i ∈ N<n

has a finite, nonempty domain Xi. In Isabelle/HOL, we im-
plement an MDP state x as a map, i.e. a function with an ex-
plicit domain dom(x). A partial state is a map where only a
subset of the state variables are assigned, but all entries are
valid, i.e. dom(x) ⊆ N<n and xi ∈ Xi for i ∈ dom(x).
The set X of states of the MDP consists of all partial states
x where dom(x) = N<n . The domain of a state x can be
restricted to a set of variables Y , denoted as x|Y . One par-
tial state x is called consistent with another partial state t
(written x ⊑ t), if and only if x|dom(t) = t.

Example As a running example, we use a model of a com-
puter network with ring topology from Guestrin et al.’s orig-
inal paper (see Fig. 1). In the ring, each machine is either
working or broken, and states change stochastically. Each
machine Ci’s state of operation is characterized by a vari-
able i, s.t. all domains Xi = {W, B}. In a ring with three
machines, a partial state is s := [1 7→W, 3 7→ B], dom(s) =
{1, 3}. It holds that s ⊑ [1 7→W], but s ̸⊑ [2 7→ B].

Scoped Functions For many MDPs, the transition behav-
ior and the rewards can be computed from a combination of
functions that individually only depend on a small subset of
all state variables. Such scoped functions take a partial state
as input and determine the output inspecting only variables
within their scope. The algorithm we formalize expresses
policy iteration using scoped functions, which avoids enu-
merating the full state space. Scoped functions pose a chal-
lenge for formalization, as scopes could be represented im-
plicitly or explicitly: we can either prove that a given func-
tion has a restricted scope, or the function can store its scope
explicitly as data. In Isabelle/HOL we do both: decoupling
scopes from the function definition is more flexible, as one
may e.g. derive multiple scopes for a single function. How-
ever, since it is in general infeasible to compute the precise
scope of a function, we use explicit scopes in the executable
version of the algorithm. An important operation on scoped
functions is the instantiation with a partial state t. The opera-
tion inst t applied to a scoped function returns a new scoped
function with reduced scope, where all input dimensions that
t provides are fixed to the values of t.

Transitions In our setting, a factored MDP comes with a
finite set of actions A, and a default action d ∈ A. For each
action a ∈ A, transition probabilities Pa

i : X → P(Xi)
with scope(Pa

i) ⊆ N<n determine the evolution of vari-
able i. Here, P(X) denotes the set of probability distribu-
tions over a finite set X . The set effectsa defines the state
variables where the behavior of a differs from the default
action (i.e. variables i s.t. Pa

i ̸= Pd
i). The combined transi-

tion probabilities between two states x and x′ are defined as
Pa(x, x′) :=

∏
i<n Pa

i (x, x
′
i).

Example In the ring topology domain, for each machine
there is an action to restart it, in which case it is guaranteed
to work in the next step. On the other hand, the default action
d is to do nothing. In general, the probability of a machine
working in the next step depends on its own state and the
state of the predecessor, e.g. scope(Pd

2) = {1, 2}. The exact
conditional probability distribution for the MDP’s evolution
under the default action is shown in Fig. 1. Using an explicit
representation to model this factored action, we would need
8 transitions, each consisting of a distribution over 8 pos-
sible successor states. This is in contrast to three tables in
the factored case. A common way to model the transition
behavior is using dependency graphs as shown in Fig. 1.

Rewards The actions a ∈ A define scoped reward func-
tions Ra

i : X → R for i < ra. The reward for selecting a is
a sum of those reward functions: Ra(x) :=

∑
i<ra

Ra
i (x).

We assume that the first rd reward functions are the same
for all actions. Now, given a policy π : X → A we are in-
terested in the discounted expected total reward νπ(x) :=
Eω∼T (π,x)

[∑
i γ

iRπ(ωi)(ωi)
]

with discount factor γ < 1
and trace space T . Our goal is to achieve the optimal reward
ν∗(x) := supπ∈Π νπ(x). For a value estimate v : X → R
and an action a, the one-step lookahead is defined as

Qa
v (x) := Ra(x) + γ

∑
x′∈X Pa(x, x′) · v(x′).

For each state x, the maximum lookahead w.r.t. all actions
is Q∗

v (x). A policy π is called greedy if Qπ
v and Q∗

v are equal
for all states. The Bellman error, denoted by ∥v−Qπ

v∥, is the
maximum difference between Qπ

v and v, over all states in X ,
i.e. the L∞ distance.

Example In our example, a factored representation of the
rewards Rd

i is Rd
i (W) = 1 and Rd

i (B) = 0, for all 1 ≤ i ≤
3. This gives rise to an exponentially smaller representation
compared to an explicitly represented MDP, where the re-
ward function for d would have 8 entries.

Linear Value Functions
Even if all reward and transition functions are scoped func-
tions, the value function νπ may still be unstructured, i.e.
computing νπ might require the construction of an expo-
nentially big mapping (Guestrin et al. 2003). However, the
value of a policy can be approximated as the weighted sum
of m basis functions hi : X → R. Given weights wi for
each hi, the value of a state x is defined as a weighted sum
νw(x) :=

∑
i<m wihi(x). Note that the efficiency of the al-

gorithm we verify here crucially depends on the fact that

C1

C2

C3

(a)

X1 X2 X3

X ′
1 X ′

2 X ′
3

(b)
X |scope(Pd

1) Pd
1 (X,X ′

1 7→ W)

X1 7→ W, X3 7→ W 0.9
X1 7→ B, X3 7→ W 0.2
X1 7→ W, X3 7→ B 0.7
X1 7→ B, X3 7→ B 0.1

(c)

Figure 1: (a) Ring network of 3 machines. (b) Variable de-
pendencies of the default action. (c) Probabilities of C1

working in the next step, for every state of C1 and C3.

hi is a scoped function and scope(hi) ⊂ N<n for most
i ∈ N<n .

For each action choice a and basis function hi,
we can compute its expected evaluation gai , defined as∑

x′ ∈ X . Pa(x, x′) · hi(x′), in the successor state. As
g is independent of the concrete weights, it can be com-
puted once for a set of basis functions, and is then
cached for efficiency. In Isabelle/HOL, we prove that
gai (x) has a structured representation with scope Γa

i :=⋃
j∈scope(hi)

. scope(Pa
j). This also leads to an efficient

computation of the Q functions:

Qa
w(x) := Qa

νw
(x) = Ra(x) + γ

∑
i<m wig

a
i (x).

Example The value functions in the ring domain can be
approximately represented using the basis function h0 = 1
and one function per machine: hi = 1 if Xi = W and 0 oth-
erwise, for 1 ≤ i ≤ 3. Note that since these basis functions
have very limited scopes, the accuracy of the best possible
approximation of the value function is also limited.

Approximate Policy Iteration
Approximate Policy Iteration (API) is a variant of policy
iteration that exploits structure in MDPs to scale to large
systems (Guestrin et al. 2003). API is an iteration algo-
rithm, where each iteration consists of three parts: policy
evaluation, policy improvement and Bellman error computa-
tion. The algorithm terminates when either a timeout tmax is
reached, the error dips below a threshold ϵ, or the weights as-
signed to the basis functions converge. In Isabelle/HOL, the
algorithm is implemented as a function api(t, π, w) (Alg. 1),
that takes as inputs a time step t, weights for the basis func-
tions w and a policy π. The initial call to the algorithm is
api(0, π0, w0) where w0 = 0 and π0 is some greedy pol-
icy w.r.t. w0. An iteration of API first uses the current policy
π to first compute updated weights w′, then a new greedy
policy π′, and finally the Bellman error err of π′. If the ter-
mination condition is met, the algorithm returns the current
iteration, weights and policy, as well as the error and whether
the weights converged. Otherwise, api is called recursively.

Algorithm 1 (Approximate Policy Iteration).

api(t, π, w) :=

if t ≥ tmax or err ≤ ϵ or w=

then (t, π′, w′, err , w=)

else api(t+ 1, π′, w′)

where w′ := upd w(π)

π′ := greedy π(w′)

err := factored err(π′, w′)

w= := w′ = w

We structure and decouple the algorithm using locales.
Conceptually, this usage of locales is similar to using mod-
ules in programming languages. Here, we use locales to pos-
tulate the existence of three functions (upd w , greedy π,
factored err) along with their specifications:
Specification 1 (upd w). A decision list policy a list rep-
resentation of policies where each entry (called branch) is a
pair (t, a) of a partial state and an action. To select an ac-
tion in a state x, we search the list for the first branch where
x is consistent with t. Now fix a decision list policy π, let
w′ = upd w(π). Then νw′ is the best possible estimate of
νπ: ∥νw′ − νπ∥ = infw ∥νw − νπ∥.
Specification 2 (greedy π). For all weights w, greedy π(w)
is a greedy decision list policy for νw.
Specification 3 (factored err). Given weights w and a
greedy decision list policy π for νw, factored err deter-
mines the Bellman error: factored err(π,w) = ∥Q∗

w−νw∥.
For now, we merely state specifications for the algorithms

API builds upon, only later will we show how to implement
the specifications concretely. This approach keeps the as-
sumptions on individual parts of the algorithm explicit and
permits an easier exchange of implementations, e.g. in our
developments one may swap the LP certification algorithm
for a verified LP solver implementation. It also facilitates
gradual verification of software: the correct behavior of the
software system can be proved top-down starting from as-
sumptions on each component. In the following sections
we show that these specifications have efficient implemen-
tations. See ?? for an overview of all components.

The choice of the specifications and the decomposition
of the algorithm into components is roughly based on the
presentation of the algorithm by Guestrin et al.. We identi-
fied the above specifications after multiple iterations. There
is usually a trade-off between the simplicity of the specifica-
tion and the complexity of the implementation: the smaller
the internal complexity, the more complex the external com-
plexity, i.e. the interactions between algorithms.

Within the context of the locale, assuming all specifica-
tions, we can derive the same error bounds as presented
by Guestrin et al.. One exemplary important observation is
that if the weights converge during API, then in the last step
the Bellman error equals the approximation error. This leads
to the following a posteriori optimality bound:
Theorem 1. Let api(w0, π0) = (t′, π, w, err ,True). Then
(1− γ)∥ν∗ − νw∥ ≤ 2γ · err .

Policy Improvement
Given weights w, the policy improvement phase determines
a greedy policy w.r.t. νw. The policy takes the form of a de-
cision list, where each element is a pair of a partial state and
an action. The main idea for an efficient computation is to
only consider actions better than the default action. This no-
tion is made precise by the bonus function δa (Alg. 2) with
scope Ta. Guestrin et al. do not include Γd in Ta, which
we assume to be an oversight in the definition, since the be-
havior of the default action does influence the bonus. Unless
components cancel out, the scope of a function difference
is the union of the scopes of both arguments. Finally, we
concatenate the branches πa for every action but d, add the
default action as a fallback and sort the decision list policy
by decreasing bonus. Here, the empty map with no entries is
⊥M , and dom(⊥M) = ∅. We can show that greedy π satis-
fies Spec. 2, since action selection proceeds in the order of
decreasing bonus.

Algorithm 2 (Decision List Policy).

greedy π :=

sort π((⊥M , d, 0) :: concat([πa | a ∈ A− {d}])
where πa := [(x, a, δa(x)) | δa(x) > 0, x ∈ X|Ta

]

δa := Qa
w −Qd

w

Ta := scope(Ra) ∪
⋃

i∈Ia
Γa
i ∪ Γd

i

Ia := {i < m | effectsa ∩ scope(hi) ̸= ∅}

Factored Bellman Error
The Bellman error ∥Q∗

w − νw∥ is an indicator of the de-
gree of optimality of a policy. An inefficient computation
would enumerate every state, and return the maximum error.
However, for a decision list policy, we can compute the er-
ror incurred by each branch separately. The total error then
equals the maximum error of any branch (Alg. 3). For now,
assume that we have a function branch err that computes
the error for a single branch, i.e. the maximum error for
any state that selects the respective branch. These are all
states that are consistent with the current branch t, but did
not match any prior branch t′ ∈ ts of the policy, formally
X(t,ts) := {x ∈ X . t ⊑ x ∧ ∀t′ ∈ ts. t′ ̸⊑ x}. Hence,
we also need to pass the prefix of the decision list policy to
branch err . Note that if the branch is selected by no state its
error defined as−∞. We show that if Spec. 4 is met and π is
a greedy policy w.r.t. w, then factored err satisfies Spec. 3.

Algorithm 3 (Factored Bellman Error).

factored err := supi<len(π) branch err(πi,map(fst , π:i))

Specification 4 (branch err). Given a prefix of a pol-
icy π, i.e. the current branch (t, a), and a list of par-
tial states ts from prior branches, branch err(t, a, ts) =
supx∈X(t,ts)

|Qa
w(x)− νw(x)|.

Branch Error Consider the branch (t, a) of the policy, for
a partial state t an action a. The states of all prior branches
form the list of partial states ts . To find the Bellman error of

the current branch, we need to maximize |Qa
w(x) − νw(x)|

w.r.t. states x ∈ X(t,ts). Note that for all states x

Qa
w(x)−νw(x) =

∑
i<ra

Ra
i (x)+

∑
i<m

wi(hi−γgi)(x). (1)

Suppose we had an algorithm to efficiently compute the
maximum sum of scoped functions. In that case we could
determine the error of a branch. Again, we specify an algo-
rithm maxΣ doing exactly that (Spec. 5). In Alg. 4, we call
maxΣ with the functions from (1). To restrict the maximiza-
tion to the states X(t,ts), we instantiate all functions with the
partial state t. Additionally, we define the functions I ′ that
evaluate to −∞ on states that select a different branch of
the policy. Hence, these states are ignored in the error com-
putation. We also apply maxΣ to the negated functions to
compute the absolute value of the error. Finally, we formally
prove that branch err satisfies Spec. 4.
Specification 5 (Variable Elimination). For scoped func-
tions fs , maxΣ (fs) = supx∈X

∑
f∈fs f(x).

Algorithm 4 (Branch Error).

branch err := max(maxΣ (fs · I ′),maxΣ (−fs · I ′))
where rs := [Ra

0 , . . . ,R
a
ra]

ws := [w0(h0 − γg0), . . . , wm(hm − γgm)]

fs := map(inst t, rs · ws)

Algorithm 5 (Variable Elimination).

max step(i, fs) := (i+ 1, e :: E′)

where (E,E′) := partition(f 7→ O(i) ∈ scope(f), fs)

e := x 7→ maxy∈XO(i)

∑
f∈E f(xO(i)7→y)

maxΣ (fs) :=
∑

f∈fs′ f(⊥M)

where (, fs ′) := max stepn(0, fs)

Variable Elimination The specification for maxΣ can be
efficiently implemented with a variable elimination algo-
rithm (Alg. 5). In each iteration, the algorithm selects a di-
mension of the state space, collects all functions that depend
on this dimension in a set E. It then creates a new function e
that maximizes all functions in E over that dimension of the
state space. The algorithm keeps track of a set of functions
to maximize and the number of the current iteration. Since
the number of operations performed by the algorithm varies
greatly with the elimination order, the variables can be re-
ordered with a bijection O : N<n → N<n . We formally
prove that max step preserves the maximum of the current
list of functions, thus maxΣ meets Spec. 5.

Value Determination
After a new candidate policy is found, it is evaluated in the
value determination phase. Since the exact value function
can not in general be represented as a linear combination of
the basis functions, we aim to find weights for the basis func-
tions that minimize the approximation error (see Spec. 1),
for which we need to solve a linear program (LP). The struc-
ture of the algorithm that finds optimal weights is analogous

to the factored Bellman error computation. For each branch
of the policy, we generate a set of LP constraints (according
to Spec. 6) that expresses the approximation error incurred
by this branch. The union of all constraints is then

weight lp :=
⋃

i<len(π) branch lp(πi,map(fst , π:i)).

Variables of the LP are the approximation error ϕ and the
weights w. The LP is optimized for minimal ϕ, the values
of the variables w in an optimal solution determine the new
weights. Given a set of LP constraints cs , ⟨cs⟩LP denotes
the set of feasible solutions. We show that for any optimal
solution (ϕ∗, w∗) ∈ ⟨weight lp⟩LP , setting upd w := w∗

satisfies Spec. 1. We also formally prove that the LP always
has an optimal solution, since the set of potentially optimal
solutions is compact.
Specification 6 (branch lp). Given a partial state t, an ac-
tion a, a list of partial states ts , branch lp constructs an LP
that minimizes the approximation error for the states X(t,ts):

(ϕ,w) ∈ ⟨branch lp(t, a, ts)⟩LP ←→
∀x ∈ X(t,ts). ϕ ≥ |Qa

w(x)− νw(x)|.

LPs for Branches For each branch of the policy, we pro-
ceed similarly to the Bellman error computation: we create
two constraint sets, for positive and negative errors respec-
tively (Alg. 6). We omit the scopes for brevity. At this level,
we make use of another algorithm min lp. Its first input C is
a list of m scoped functions, the second input b is another list
of scoped functions. Now min lp(C, b) creates an LP that
minimizes Cw− b w.r.t. w over all states (see Spec. 7). The
definitions of C and b are analogous to the Bellman error
computation. It then follows that branch lp fulfills Spec. 6.
Algorithm 6 (Branch LP).

branch lp := min lp(C,−b · I ′) ∪min lp(−C, b · I ′)
where b := map(inst t, [R

a
i | i < ra])

C := map(inst t, [hi − γgai | i < m])

Specification 7 (min lp). min lp(C, b) generates an LP
that minimizes Cw − b over all weights w:

(ϕ,w) ∈ ⟨min lp(C, b)⟩LP ←→
∀x ∈ X . ϕ ≥

∑
i<len(C) wiCi(x) +

∑
i<len(b) bi(x).

Factored LP Construction The algorithm min lp resem-
bles maxΣ , so we only point out the challenges encountered
during verification. Full details can be found in the formal-
ization. There are two significant modifications we made to
the algorithm to make verification feasible. First, the original
algorithm may create equality constraints that constrain vari-
ables to −∞. Since these constraints are not supported by
the LP solvers we use, we formally prove that one can mod-
ify the algorithm to omit such constraints without changing
the set of feasible weights. Second, the combination of LP
constraints in the definition of weight lp requires some care,
to avoid interactions between LP variables created in differ-
ent branches. The min lp algorithm creates new (private) LP
variables and we need to make sure that these variables have
distinct names for each branch. This issue was not discussed

by Guestrin et al.. The problem can be solved by adding a
tag to each generated variable. The tags contain t, a, and a
flag to differentiate the two invocations of min lp in each
branch. For distinct tags p and p′ we can then show that the
solutions to the union of two constraint sets are equivalent
to the intersection of the solution spaces of the individual
constraint sets (concerning ϕ and w):

⟨min lp(p, C, b) ∪min lp(p′, C ′, b′)⟩LP =

⟨min lp(p, C, b)⟩LP ∩ ⟨min lp(p′, C ′, b′)⟩LP .

We show that min lp creates an LP that is equivalent to
the explicit (potentially exponentially larger) LP that has a
constraint for each MDP state. It immediately follows that
min lp satisfies Spec. 7, which completes our correctness
proof of API. With this approach to algorithm verification
using loosely coupled locales, min lp and maxΣ are not tied
to MDPs and are thereby reusable components.

Code Generation
We now discuss the process of deriving a verified efficiently
executable version from the verified abstract algorithm dis-
cussed above. To do so, we follow the methodology of pro-
gram refinement (Wirth 1971), where one starts with an ab-
stract, potentially non-executable version of the algorithm
and verifies it. Then one devises more optimised versions of
the algorithm, and only proves the optimizations correct in
this latter step, thus separating mathematical reasoning from
implementation specific reasoning. This approach was used
in most successful algorithm verification efforts (Klein et al.
2009; Esparza et al. 2013; Kanav, Lammich, and Popescu
2014). In this work, the three most important stages are
the initial abstract algorithm, an implementation with ab-
stract data structures, and finally an implementation with
concretized data structures. As a last step, we export veri-
fied code for API in the programming language Scala.

Refinement using Locales Our implementation of step-
wise refinement is based on Isabelle/HOL locales. For each
locale of the abstract algorithm, we define a corresponding
locale where we define the executable version of the algo-
rithm. Finally, we relate the abstract version of the MDP to
the concrete version. For each definition, we then show that
corresponding inputs lead to corresponding outputs, i.e. our
abstract algorithm and the implementation behave the same.
At this point in the refinement, data structures remain ab-
stract interfaces, with the concrete implementations chosen
only later. We use the data structures provided by the Isabelle
Collections Framework (Lammich and Lochbihler 2019) for
code generation and we extend them with a data structure for
scoped functions, represented as a pair of a function and a set
for its scope. The data structure also provides an operation
to evaluate a function on its full scope for memoization.

Certification of LP Solutions An implementation of API
depends on efficient LP solvers. In our verified implemen-
tation, we use precise but unverified LP solvers and certify
their results. This avoids implementing a verified, optimized
LP solver but retains formal guarantees – the tradeoff here
is that the unverified LP solver might return solutions that

Ring Star
n t(s) tLP(s) Constrs Vars t(s) tLP(s)

1 0.27 0.02 74 41 0.34 0.03
3 0.89 0.15 1258 693 0.50 0.05
5 1.89 0.46 4378 2455 0.69 0.08
7 3.78 0.98 9418 5305 0.98 0.14
9 6.74 1.82 16378 9243 1.30 0.22

11 12.44 3.36 25258 14269 1.52 0.29
13 20.95 5.31 36058 20383 1.76 0.36
15 34.69 8.67 48778 27585 2.28 0.50
17 58.30 16.86 63418 35875 2.89 0.64
19 92.19 30.25 79978 45253 3.69 0.80

Table 1: Evaluation on the ring and star domains. The first
column denotes the number of clients. For each topology,
the first two columns give the total running time and time
spent in the LP solver. For the ring domain, we also show
the number of LP constraints and variables generated.

cannot be certified. At the cost of performance, it is also
possible to connect the formalization to an existing simplex
implementation for Isabelle/HOL (Spasić and Marić 2012).
To achieve formal guarantees, the LP has to be solved ex-
actly, i.e. using rational numbers. Two potential candidates
for precise LP solvers are QSopt ex (Applegate et al. 2007)
and SoPlex (Bestuzheva et al. 2023). For larger LPs in our
setting, SoPlex demonstrated more consistent performance.

We certify optimality using the dual solution and the
strong duality of linear programming. In our formalization
we also formally prove that infeasibility and unbounded-
ness can be certified similarly using farkas certificates or un-
bounded rays. The linear program is first preprocessed to a
standard form: variable bounds and equality constraints are
reduced to inequality constraints. The constraints of the re-
sulting LP are of the form Ax ≤ b, with no restrictions on x.
During benchmarking of the certification process, the nor-
malization operation usually applied to rationals after each
operation proved to be very costly. For certification, we rep-
resent rational numbers as pairs that are never normalized,
which leads to faster certificate checking in our experiments.

The exported Scala program takes an arbitrary function
from linear programs to their solutions as input. If this func-
tion returns invalid solutions, they are rejected by the certifi-
cate checker, so there are no assumptions we need to place
on the LP solver. However, there is the implicit assumption
that the LP solver is deterministic. Since we are working in
a fragment of a functional programming language, calling
the LP solver twice on the same problem should lead to the
same solution. In theory, a nondeterministic LP solver could
be misused to lead to inconsistencies. As we do not compare
LP solutions in our algorithm and SoPlex is actually deter-
ministic, this problem does not impact our verified software.
A more general solution to the problem could be the use of
memoization or to model the nondeterminism with monads.

Experimental Evaluation We show the practicality of our
verified implementation by applying it to both the ring and
star topologies from (Guestrin et al. 2003). Note that all
numerical computations have to be performed with infinite

precision, which substantially impacts the performance. We
run our implementation on an Intel i7-11800H CPU and set
the discount factor to 0.9 in all our experiments. In all runs,
the weights converged after max. 5 iterations. The results of
the experiments (Table 1) show that the algorithm can deal
with ring networks of half a million states and 20 actions.
For larger networks, the precise mode of the LP solver So-
Plex cannot find a rational solution. The experiment shows
that our implementation of linear programming certification
can process linear programs with tens of thousands of con-
straints. For the simpler star topology, we can handle sys-
tems with 240 states in 45s.

Discussion
Our work combines and integrates a wide range of tools and
formalization efforts to produce a verified implementation
of API. In Isabelle/HOL, we build on the formal libraries
for LPs (Thiemann 2022), MDPs (Hölzl 2017), linear al-
gebra, analysis (Hölzl, Immler, and Huffman 2013), prob-
ability theory (Hölzl and Heller 2011), and the collections
framework (Lammich and Lochbihler 2019). Furthermore,
we certify the results computed by precise LP solvers. In to-
tal, our development is comprised of approximately 20,000
lines of code, two thirds of which concern code generation.
We show how to facilitate locales, powerful automation in
Isabelle/HOL, and certification to develop complex formally
verified software. We also make the case that the process
of algorithm verification provides a detailed understanding
of the algorithm: all hidden assumptions are made explicit,
while we modularize the algorithm into components with
precisely specified behaviour.

The methodology presented here can be applied to a large
number of algorithms since the algorithm we verified is a
seminal algorithm for solving factored MDPs, combining a
large number of concepts that are widely used in many con-
texts, like AI (Delgado, Sanner, and De Barros 2011; Os-
band and Roy 2014; Deng, Devic, and Juba 2022) and model
checking (Hinton et al. 2006; Dehnert et al. 2017).

Applications of interactive theorem provers in verification
and formalizing mathematics have been recently attracting a
lot of attention (Avigad and Harrison 2014; Avigad 2023;
Massot 2021). In most applications, especially in computer
science (Esparza et al. 2013; Klein et al. 2009) and AI (Bag-
nall and Stewart 2019; Selsam, Liang, and Dill 2017), the
emphasis is on the difficulty of the proofs, whether that is
due to many cases or complex constructions, etc., and how
theorem proving helped find mistakes or find missing cases
in the proofs. A distinct feature of this work is that its com-
plexity comes from the large number of concepts it com-
bines, shown in Fig. ??, which is a more prevalent issue in
formalizing pure mathematics. Our project has contributed
a better restructuring of the algorithm and untangling of the
different concepts, leading to better understandability.

Multiple directions can be considered to extend and build
on our work. An alternative to using exact LP solvers is to
use their highly optimized floating point counterparts that
do not calculate exact solutions. In this case, one needs to
certify the error bound derived from a dual solution to the
LP. Then the error bound has to be incorporated in the error

analysis of the algorithm to obtain formal guarantees. More-
over, we may initialize the algorithm with weights computed
by an unverified, floating point implementation of API to re-
duce number of iterations performed by the verified imple-
mentation. In Isabelle/HOL, some of the correctness proofs
for code generation can be automated using tools to trans-
fer theorems. Furthermore, the ergonomics for instantiating
locales and inheriting from other locales could be improved
for situations with many locale parameters.

Related Work Several formal treatments of MDPs have
been developed in the theorem provers Isabelle/HOL (Hölzl
2017; Schäffeler and Abdulaziz 2023; Chevallier and Fleu-
riot 2021; Hartmanns, Kohlen, and Lammich 2023) and
Coq (Vajjha et al. 2021). All developments verify algorithms
for explicitly represented MDPs, which limits their practical
applicability to solve large MDPs. We adapt and integrate
the implementation of Schäffeler and Abdulaziz with our
formalization. The algorithm we verified in Isabelle/HOL
was first presented by (Guestrin et al. 2003). An approach
to LP certification certification with Isabelle/HOL has been
done before as part of the Flyspeck project (Obua and Nip-
kow 2009), where the feasibility of a solution to a linear
program is checked by Isabelle/HOL. The work presents a
method that uses dual solutions produced by floating-point
LP solvers to find bounds on the objective value of an LP.
The tool Marabou for neural network verfication uses Farkas
vectors to produce proofs for its results (Isac et al. 2022).

Acknowledgements
This project was funded in part by the Deutsche Forschungs-
gemeinschaft – 378803395 (ConVeY).

References
Abdulaziz, M.; and Koller, L. 2022. Formal Semantics and
Formally Verified Validation for Temporal Planning. In The
36th AAAI Conference on Artificial Intelligence (AAAI).
Abdulaziz, M.; and Kurz, F. 2023. Formally Verified SAT-
Based AI Planning. In The 37th AAAI Conference on Artifi-
cial Intelligence (AAAI).
Abdulaziz, M.; and Lammich, P. 2018. A Formally Verified
Validator for Classical Planning Problems and Solutions. In
The 30th International Conference on Tools with Artificial
Intelligence (ICTAI).
Applegate, D. L.; Cook, W.; Dash, S.; and Espinoza, D. G.
2007. Exact Solutions to Linear Programming Problems.
Operations Research Letters.
Avigad, J. 2023. Mathematics and the Formal Turn.
arxiv:2311.00007.
Avigad, J.; and Harrison, J. 2014. Formally Verified Mathe-
matics. Commun. ACM.
Bagnall, A.; and Stewart, G. 2019. Certifying the True Er-
ror: Machine Learning in Coq with Verified Generalization
Guarantees. In The 33rd AAAI Conference on Artificial In-
telligence (AAAI).
Ballarin, C. 2014. Locales: A Module System for Mathe-
matical Theories. J. Autom. Reason.

Bestuzheva, K.; Besançon, M.; Chen, W.-K.; Chmiela, A.;
Donkiewicz, T.; van Doornmalen, J.; Eifler, L.; Gaul, O.;
Gamrath, G.; Gleixner, A.; Gottwald, L.; Graczyk, C.; Hal-
big, K.; Hoen, A.; Hojny, C.; van der Hulst, R.; Koch, T.;
Lübbecke, M.; Maher, S. J.; Matter, F.; Mühmer, E.; Müller,
B.; Pfetsch, M. E.; Rehfeldt, D.; Schlein, S.; Schlösser, F.;
Serrano, F.; Shinano, Y.; Sofranac, B.; Turner, M.; Vigerske,
S.; Wegscheider, F.; Wellner, P.; Weninger, D.; and Witzig,
J. 2023. Enabling Research through the SCIP Optimization
Suite 8.0. ACM Trans. Math. Softw.
Budde, C. E.; Dehnert, C.; Hahn, E. M.; Hartmanns, A.;
Junges, S.; and Turrini, A. 2017. JANI: Quantitative Model
and Tool Interaction. In The 23rd International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems.
Chevallier, M.; and Fleuriot, J. D. 2021. Formalising
the Foundations of Discrete Reinforcement Learning in Is-
abelle/HOL. CoRR.
Dehnert, C.; Junges, S.; Katoen, J.-P.; and Volk, M. 2017. A
Storm Is Coming: A Modern Probabilistic Model Checker.
In The 29th International Conference on Computer Aided
Verification.
Delgado, K. V.; Sanner, S.; and De Barros, L. N. 2011. Effi-
cient Solutions to Factored MDPs with Imprecise Transition
Probabilities. Artificial Intelligence.
Deng, Z.; Devic, S.; and Juba, B. 2022. Polynomial Time
Reinforcement Learning in Factored State MDPs with Lin-
ear Value Functions. In The 25th International Conference
on Artificial Intelligence and Statistics.
Esparza, J.; Lammich, P.; Neumann, R.; Nipkow, T.;
Schimpf, A.; and Smaus, J.-G. 2013. A Fully Verified Exe-
cutable LTL Model Checker. In 25th International Confer-
ence on Computer Aided Verification (CAV).
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient Solution Algorithms for Factored MDPs. J.
Artif. Intell. Res.
Hartmanns, A.; Junges, S.; Quatmann, T.; and Weininger,
M. 2023. A Practitioner’s Guide to MDP Model Checking
Algorithms. In TACAS (1), volume 13993 of Lecture Notes
in Computer Science, 469–488. Springer.
Hartmanns, A.; Kohlen, B.; and Lammich, P. 2023. Fast Ver-
ified SCCs for Probabilistic Model Checking. In The 21st
International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA).
Hinton, A.; Kwiatkowska, M. Z.; Norman, G.; and Parker,
D. 2006. PRISM: A Tool for Automatic Verification of Prob-
abilistic Systems. In The 22nd International Conference on
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS).
Hölzl, J. 2017. Markov Chains and Markov Decision Pro-
cesses in Isabelle/HOL. J. Autom. Reason.
Hölzl, J.; and Heller, A. 2011. Three Chapters of Measure
Theory in Isabelle/HOL. In 2nd International Conference
on Interactive Theorem Proving (ITP).
Hölzl, J.; Immler, F.; and Huffman, B. 2013. Type Classes
and Filters for Mathematical Analysis in Isabelle/HOL. In

4th International Conference on Interactive Theorem Prov-
ing (ITP).
Isac, O.; Barrett, C.; Zhang, M.; and Katz, G. 2022. Neural
Network Verification with Proof Production. In The 22nd
Conference on Formal Methods in Computer-Aided Design
(FMCAD).
Junges, S.; Jansen, N.; Katoen, J.; Topcu, U.; Zhang, R.;
and Hayhoe, M. M. 2018. Model Checking for Safe Nav-
igation Among Humans. In McIver, A.; and Horváth, A.,
eds., Quantitative Evaluation of Systems - 15th Interna-
tional Conference, QEST 2018, Beijing, China, September
4-7, 2018, Proceedings, volume 11024 of Lecture Notes in
Computer Science, 207–222. Springer.
Kanav, S.; Lammich, P.; and Popescu, A. 2014. A Confer-
ence Management System with Verified Document Confi-
dentiality. In The 26th International Conference on Com-
puter Aided Verification (CAV).
Keller, T.; and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In McCluskey, L.; Williams, B. C.;
Silva, J. R.; and Bonet, B., eds., Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil,
June 25-19, 2012. AAAI.
Klein, G.; Elphinstone, K.; Heiser, G.; Andronick, J.; Cock,
D.; Derrin, P.; Elkaduwe, D.; Engelhardt, K.; Kolanski, R.;
Norrish, M.; Sewell, T.; Tuch, H.; and Winwood, S. 2009.
seL4: Formal Verification of an OS Kernel. In 22nd ACM
Symposium on Operating Systems Principles 2009 (SOSP).
Lahijanian, M.; Wasniewski, J.; Andersson, S. B.; and Belta,
C. 2010. Motion planning and control from temporal logic
specifications with probabilistic satisfaction guarantees. In
IEEE International Conference on Robotics and Automa-
tion, ICRA 2010, Anchorage, Alaska, USA, 3-7 May 2010,
3227–3232. IEEE.
Lammich, P.; and Lochbihler, A. 2019. Automatic Refine-
ment to Efficient Data Structures: A Comparison of Two Ap-
proaches. J Autom Reasoning.
Leroy, X. 2009. Formal Verification of a Realistic Compiler.
Commun. ACM.
Massot, P. 2021. Why Formalize Mathematics?
Nipkow, T.; Paulson, L. C.; and Wenzel, M. 2002. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic.
Obua, S.; and Nipkow, T. 2009. Flyspeck II: The Basic Lin-
ear Programs. Ann Math Artif Intell.
Osband, I.; and Roy, B. V. 2014. Near-optimal reinforce-
ment learning in factored MDPs. In Proceedings of the 27th
International Conference on Neural Information Processing
Systems - Volume 1, NIPS’14, 604–612. Cambridge, MA,
USA: MIT Press.
Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language Description.
Schäffeler, M.; and Abdulaziz, M. 2023. Formally Veri-
fied Solution Methods for Infinite-Horizon Markov Decision
Processes. In The 37th AAAI Conference on Artificial Intel-
ligence (AAAI).

Selsam, D.; Liang, P.; and Dill, D. L. 2017. Developing Bug-
Free Machine Learning Systems With Formal Mathematics.
In The 34th International Conference on Machine Learning
(ICML).
Spasić, M.; and Marić, F. 2012. Formalization of Incremen-
tal Simplex Algorithm by Stepwise Refinement. In The 18th
International Symposium on Formal Methods.
Thiemann, R. 2022. Duality of Linear Programming. Arch.
Formal Proofs.
Vajjha, K.; Shinnar, A.; Trager, B. M.; Pestun, V.; and Ful-
ton, N. 2021. CertRL: Formalizing Convergence Proofs for
Value and Policy Iteration in Coq. In The 10th International
Conference on Certified Programs and Proofs (CPP).
Wirth, N. 1971. Program Development by Stepwise Refine-
ment. Commun. ACM.
Younes, H. L.; and Littman, M. L. 2004. PPDDL1. 0: The
Language for the Probabilistic Part of IPC-4. In Proc. Inter-
national Planning Competition.

